首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This study assessed the effect of the course cycle on theoretical knowledge of dental morphology and the dental carving ability of dental students. Thirty-two dental students from the third semester (initial cycle) and 30 students from the eighth and tenth semesters of the dental course (end cycle) had their theoretical knowledge on dental morphology assessed using a questionnaire with ten closed questions. Their dental carving ability was also assessed using wax carvings in macro models of plaster (for the third [S3] and eight [S8] semesters) and natural-sized artificial teeth (for the tenth [S10] semester). The teeth chosen for the dental carving activity were #16 and #47. The scores were statistically analyzed using the t-test, Kruskal–Wallis test, and Mann–Whitney test (α = 0.05). Students from the initial cycle presented better theoretical knowledge than the other groups did (P < 0.007). No significant differences in carving score were found between the initial and end cycles (P > 0.05), although S10 students obtained a higher score for teeth #16 and #47 (P < 0.05). Natural-sized artificial teeth received a higher evaluation score in dental carvings than the macro models (P < 0.001). Within the limits of this study, it was possible to conclude that students from the initial cycle (S3) presented higher theoretical knowledge, whereas no difference in carving ability was observed between the initial and end cycles. The tenth semester (S10) students performed dental carvings with better quality. Furthermore, carvings in natural-sized artificial teeth presented better quality compared with the macro models.  相似文献   

2.
This systematic review aimed to identify the level of impact of educational strategies for teaching tooth carving on the carving ability of undergraduate dental students. The PubMed-NCBI, Cochrane-CENTRAL, LILACS, Ibecs, BBO, Web of Science, and Scopus databases were searched in May 2019, for randomized controlled trials (RCTs) and two-arm non-randomized studies of interventions (NRSI) addressing educational interventions toward the dental carving of undergraduate students. Studies from the year 2000 until the search date, written in English, Portuguese, and Spanish were included. Study screening and data extraction were performed in duplicate and blinded. The data were presented narratively, considering the dental carving ability of students the primary outcome. The risk of bias was assessed using the RoB tool 2.0 and ROBINS-I, and the level of evidence was determined with GRADE. Of 3,574 studies, 6 were included, with 3 RCTs and 3 NRSIs. Very low level of evidence was provided from the NRSIs that flipped classroom (1 study; n = 140) and a student-driven revised module (1 study; n = 264) improved the carving ability of students. Additionally, there was moderate evidence of online complementary material (1 RCT; n = 30) and reinforcement class improving the carving ability of students (1 RCT; n = 29). The replacement of traditional classes by an instructional DVD (1 RCT; n = 73) and assessment of carving projects through digital systems (1 NRSI; n = 79) did not enhance the carving ability of students. Study design, risk of bias, and imprecision downgraded the level of evidence. There was a very low to moderate evidence on the effectiveness of student-driven educational approaches and complementary classes of dental anatomy in improving the dental carving ability of students.  相似文献   

3.
It is essential for dental hygienists to have basic knowledge of gross anatomy to provide efficient treatment. However, gross anatomy course is relatively neglected due to their disparity from actual clinical dental practice. This study aimed to propose an effective dental hygiene gross anatomy curriculum that reflects the opinions of professional clinical dental hygienists. The study had an online-based cross-sectional design and the survey was distributed to clinical dental hygienists via social networks (n = 200). The questionnaire consisted of questions on the utilization of anatomical knowledge in clinical practice, opinions on the contents and methods of gross anatomy education, and general characteristics. The present study found that 186 (93%) used anatomical knowledge at an above-average level. Qualitative analysis indicated that dental implant surgery, radiography, and extraction were the clinical procedures that required the most anatomical knowledge. The clinical dental hygienists answered that the most-necessary knowledge is that of the mandibular nerve, followed by that on the temporomandibular joint, mandible, maxilla, maxillary nerve, and masticatory muscle. The methods proposed to improve gross anatomy education were (in decreasing order of importance) using videos or photographs (X-rays, CT, MRI, etc.), integrating education with clinical subjects, and using a three-dimensional visualization program. Higher education levels of respondents have increased their tendency to believe that the contents and methods of the presented education were necessary. Dental hygienists who utilized anatomical knowledge more often tended to be had a greater appreciation of the necessity of all educational contents and methods.  相似文献   

4.
In recent decades, three-dimensional (3D) printing as an emerging technology, has been utilized for imparting human anatomy knowledge. However, most 3D printed models are rigid anatomical replicas that are unable to represent dynamic spatial relationships between different anatomical structures. In this study, the data obtained from a computed tomography (CT) scan of a normal knee joint were used to design and fabricate a functional knee joint simulator for anatomical education. Utility of the 3D printed simulator was evaluated in comparison with traditional didactic learning in first-year medical students (n = 35), so as to understand how the functional 3D simulator could assist in their learning of human anatomy. The outcome measure was a quiz comprising 11 multiple choice questions based on locking and unlocking of the knee joint. Students in the simulation group (mean score = 85.03%, ±SD 10.13%) performed significantly better than those in the didactic learning group, P < 0.05 (mean score = 70.71%, ±SD 15.13%), which was substantiated by large effect size, as shown by a Cohen’s d value of 1.14. In terms of learning outcome, female students who used 3D printed simulators as learning aids achieved greater improvement in their quiz scores as compared to male students in the same group. However, after correcting for the modality of instruction, the sex of the students did not have a significant influence on the learning outcome. This randomized study has demonstrated that the 3D printed simulator is beneficial for anatomical education and can help in enriching students’ learning experience.  相似文献   

5.
Anatomy is a key knowledge area in chiropractic and is formally offered in the undergraduate component of chiropractic education. There is the potential for loss of anatomy knowledge before the opportunity to apply it in a clinical setting. This study aimed to determine whether chiropractic clinicians retain a level of anatomy knowledge comparable to that of chiropractic students and to compare chiropractors' self-rating of their anatomical knowledge against an objective knowledge assessment tool. A previously validated multiple-choice test was utilized to measure retention of limb musculoskeletal (MSK) knowledge in Australian chiropractors. One hundred and one registered chiropractors completed the questionnaire and responses were scored, analyzed, and compared to scores attained by undergraduate and postgraduate chiropractic students who had previously completed the same questionnaire. The results indicated that practitioners retained their anatomy knowledge, with a significantly higher total mean score than the undergraduate group [total mean score = 36.5% (±SD 13.6%); P < 0.01] but not significantly different to the postgraduate group [total mean score = 52.2% (±SD 14.1%); P = 0.74]. There was a weak positive correlation between chiropractors' self-rated knowledge and test performance scores indicating the effectiveness of this Australian chiropractic group in self-assessing their anatomy knowledge. This study found that Australian chiropractors' knowledge of MSK anatomy was retained during the transition from university to clinical practice and they accurately evaluated their own test performance.  相似文献   

6.
Game-based learning can have a positive impact on medical education, and virtual worlds have great potential for supporting immersive online games. It is necessary to reinforce current medical students' knowledge about radiological anatomy and radiological signs. To meet this need, the objectives of this study were: to design a competition-based game in the virtual world, Second Life and to analyze the students' perceptions of Second Life and the game, as well as to analyze the medium-term retention of knowledge and the potential impact on the final grades. Ninety out of 197 (45.6%) third-year medical students voluntarily participated in an online game based on self-guided presentations and multiple-choice tests over six 6-day stages. Participants and non-participants were invited to perform an evaluation questionnaire about the experience and a post-exposure knowledge test. Participants rated the experience with mean scores equal to or higher than 8.1 on a 10-point scale, highlighting the professor (9.5 ± 1.1; mean ± SD) and the virtual environment (8.9 ± 1.1). Participants had better results in the post-exposure test than non-participants (59.0 ± 13.5 versus 45.3 ± 11.5; P < 0.001) and a lower percentage of answers left blank (6.7 ± 8.4 versus 13.1 ± 12.9; P = 0.014). Competitive game-based learning within Second Life is an effective and well-accepted means of teaching core radiological anatomy and radiological signs content to medical students. The higher medium-term outcomes obtained by participants may indicate effective learning with the game. Additionally, valuable positive perceptions about the game, the educational contents, and the potential benefit for their education were discovered among non-participants.  相似文献   

7.
There is growing demand from accrediting agencies for improved basic science integration into fourth-year medical curricula and inculcation of medical students with teaching skills. The objective of this study was to determine the effectiveness of a fourth-year medical school elective course focused on teaching gross anatomy on anatomical knowledge and teaching confidence. Fourth-year medical student “teacher” participants' gross anatomy knowledge was assessed before and after the course. Students rated their overall perceived anatomy knowledge and teaching skills on a scale from 0 (worst) to 10 (best), and responded to specific knowledge and teaching confidence items using a similar scale. First-year students were surveyed to evaluate the effectiveness of the fourth-year student teaching on their learning. Thirty-two students completed the course. The mean anatomy knowledge pretest score and posttest scores were 43.2 (±22.1) and 74.1 (±18.4), respectively (P < 0.001). The mean perceived anatomy knowledge ratings before and after the course were 6.19 (±1.84) and 7.84 (±1.30), respectively (P < 0.0001) and mean perceived teaching skills ratings before and after the course were 7.94 (±1.24) and 8.53 (±0.95), respectively (P = 0.002). Student feedback highlighted five themes which impacted fourth-year teaching assistant effectiveness, including social/cognitive congruence and improved access to learning opportunities. Together these results suggest that integrating fourth-year medical students in anatomy teaching increases their anatomical knowledge and improves measures of perceived confidence in both teaching and anatomy knowledge. The thematic analysis revealed that this initiative has positive benefits for first-year students.  相似文献   

8.
E-learning is an educational method that improves knowledge innovation by sharing relevant images for advanced learning, especially in a pandemic state. Furthermore, cone-beam computed tomography (CBCT) is a method that gathers medical or dental diagnostic images. This study aimed to analyze the effectiveness of dental anatomy education through a CBCT technology tool, through teachers' and students' perspectives, adjusted according to the disruptions caused by the Covid-19 pandemic. A cohort study and longitudinal exploratory analysis were performed. Forty undergraduate first-year dental students, from the University of Coimbra in Portugal, were selected as per the inclusion and exclusion criteria. Two different teaching methods were applied during an identical time-period: face-to-face lectures complemented by physical models (T1 cohort) and webinar lectures complemented by CBCT images (T2 cohort). Learning outcomes were then studied according to theoretical and spatial orientation contexts. A self-reported survey that focused on students' satisfaction, stress, and support was studied. Both teaching methods were analyzed with paired sample student's t-test and Pearson Correlation Confidence intervals 95% with P < 0.05. Furthermore, exploratory factor analysis (EFA) was used for self-reported satisfaction survey validity and reliability analysis. The learning outcomes between T1 and T2 cohorts were statistically significant, (P < 0.001) corresponding to differences with a large effect degree (r > 0.60). Students' satisfaction, as measured on a six-point Likert scale, was positively influenced by the webinar lectures supplemented with CBCT images (T2 cohort) in a learning context (4.95 ± 0.5) and future applications (5.92 ± 0.27). In conclusion, the webinar approach with CBCT images was more effective and better learning method for teaching dental anatomy.  相似文献   

9.
Tooth morphology has a pivotal role in the dental curriculum and provides one of the important foundations of clinical practice. To supplement tooth morphology teaching a three-dimensional (3D) quiz application (app) was developed. The 3D resource enables students to study tooth morphology actively by selecting teeth from an interactive quiz, modify their viewpoint and level of zoom. Additionally, students are able to rotate the tooth to obtain a 3D spatial understanding of the different surfaces of the tooth. A cross-over study was designed to allow comparison of students’ results after studying with the new application or traditionally with extracted/model teeth. Data show that the app provides an efficient learning tool and that students’ scores improve with usage (18% increase over three weeks, P < 0.001). Data also show that student assessment scores were correlated with scores obtained while using the app but were not influenced by the teaching modality initially accessed (r2 = 0.175, P < 0.01). Comparison of the 2016 and 2017 class performance shows that the class that had access to the app performed significantly better on their final tooth morphology assessment (68.0% ±15.0 vs. 75.3% ±13.4, P < 0.01). Furthermore, students reported that the 3D application was intuitive, provided useful feedback, presented the key features of the teeth, and assisted in learning tooth morphology. The 3D tooth morphology app thus provides students with a useful adjunct teaching tool for learning dental anatomy. Anat Sci Educ 00: 000–000. © 2018 American Association of Anatomists.  相似文献   

10.
The presentation of pre-sliced specimens is a frequently used method in the laboratory teaching of cross-sectional anatomy. In the present study, a new teaching method based on a hands-on slicing activity was introduced into the teaching of brain, heart, and liver cross-sectional anatomy. A randomized, controlled trial was performed. A total of 182 third-year medical students were randomized into a control group taught with the prosection mode (pre-sliced organ viewing) and an experimental group taught with the dissection mode (hands-on organ slicing). These teaching methods were assessed by testing the students' knowledge of cross-sectional specimens and cross-sectional radiological images, and analyzing students' feedback. Using a specimen test on three organs (brain, heart, and liver), significant differences were observed in the mean scores of the control and experimental groups: for brain 59.6% (±14.2) vs. 70.1% (±15.5), (P < 0.001, Cohen's d = 0.17); for heart: 57.6% (±12.5) vs. 75.6% (±15.3), (P < 0.001, d = 0.30); and for liver: 60.4% (±14.5) vs. 81.7% (±14.2), (P < 0.001, d = 0.46). In a cross-sectional radiological image test, better performance was also found in the experimental group (P < 0.001). The mean scores of the control vs. experimental groups were as follows: for brain imaging 63.9% (±15.1) vs. 71.1% (±16.1); for heart imaging 64.7% (±14.5) vs. 75.2% (±15.5); and for liver imaging 61.1% (±15.5) vs. 81.2% (±14.6), respectively. The effect sizes (Cohen's d) were 0.05, 0.23, and 0.52, respectively. Students in the lower tertile benefited the most from the slicing experiences. Students' feedback was generally positive. Hands-on slicing activity can increase the effectiveness of anatomy teaching and increase students' ability to interpret radiological images.  相似文献   

11.
Human cadaveric prosections are a traditional, effective, and highly appreciated modality of anatomy learning. Plastic models are an alternative teaching modality, though few studies examine their effectiveness in learning of upper limb musculoskeletal anatomy. The purpose of this study is to investigate which modality is associated with a better outcome, as assessed by students' performance on examinations. Overall, 60 undergraduate medical students without previous knowledge of anatomy participated in the study. Students were assigned into two groups. Group 1 attended lectures and studied from cadaveric prosections (n = 30) and Group 2 attended lectures and used plastic models in the laboratory (n = 30). A knowledge assessment, including examination with tag questions (spot test) and written multiple-choice questions, was held after the end of the study. Students' perceptions were also investigated via an anonymous questionnaire. No significant difference in students' performance was observed between the group using prosections and the group using plastic models (32.2 ± 14.7 vs 35.0 ± 14.8, respectively; P = 0.477). Similarly, no statistically significant difference was found regarding students' satisfaction from using each learning modality (P = 0.441). Plastic models may be a valuable supplementary modality in learning upper limb musculoskeletal anatomy, despite their limitations. Easy to use and with no need for maintaining facilities, they are highly appreciated by students and can be useful when preparing for the use of cadaveric specimens.  相似文献   

12.
Spatial ability is an important factor in learning anatomy. Students with high scores on a mental rotation test (MRT) systematically score higher on anatomy examinations. This study aims to investigate if learning anatomy also oppositely improves the MRT‐score. Five hundred first year students of medicine (n = 242, intervention) and educational sciences (n = 258, control) participated in a pretest and posttest MRT, 1 month apart. During this month, the intervention group studied anatomy and the control group studied research methods for the social sciences. In the pretest, the intervention group scored 14.40 (SD: ± 3.37) and the control group 13.17 (SD: ± 3.36) on a scale of 20, which is a significant difference (t‐test, t = 4.07, df = 498, P < 0.001). Both groups show an improvement on the posttest compared to the pretest (paired samples t‐test, t = 12.21/14.71, df = 257/241, P < 0.001). The improvement in the intervention group is significantly higher (ANCOVA, F = 16.59, df = 1;497, P < 0.001). It is concluded that (1) medical students studying anatomy show greater improvement between two consecutive MRTs than educational science students; (2) medical students have a higher spatial ability than educational sciences students; and (3) if a MRT is repeated there seems to be a test effect. It is concluded that spatial ability may be trained by studying anatomy. The overarching message for anatomy teachers is that a good spatial ability is beneficial for learning anatomy and learning anatomy may be beneficial for students' spatial ability. This reciprocal advantage implies that challenging students on spatial aspects of anatomical knowledge could have a twofold effect on their learning. Anat Sci Educ 6: 257–262. © 2013 American Association of Anatomists.  相似文献   

13.
Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe‐Reflect‐Draw‐Edit‐Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER‐SAP) at a United Kingdom medical school in which a cross‐over trial with pre‐post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER‐SAP, medical student (n = 154) pre‐post knowledge test scores were significantly greater (P < 0.001) with standard anatomy learning methods (3.26, SD = ±2.25) than with ORDER‐SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self‐directed gross anatomy online interactive tutorial (ORDER‐IT) for participating first year medical students (n = 55). Student performance was significantly greater (P < 0.001) with ORDER‐IT (2.71 ± 2.17) when compared to a control tutorial (1.31 ± 2.03). Performances of students with visual and artistic preferences when using ORDER were not significantly different (P > 0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research‐led, innovative, time and cost‐effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7–22. © 2016 American Association of Anatomists.  相似文献   

14.
Visual-spatial abilities are considered a successful predictor in anatomy learning. Previous research suggest that visual-spatial abilities can be trained, and the magnitude of improvement can be affected by initial levels of spatial skills. This case-control study aimed to evaluate (1) the impact of an extra-curricular anatomy dissection course on visual-spatial abilities of medical undergraduates and (2) the magnitude of improvement in students with initially lower levels of visual-spatial abilities, and (3) whether the choice for the course was related to visual-spatial abilities. Course participants (n = 45) and controls (n = 65) were first and second-year medical undergraduates who performed a Mental Rotations Test (MRT) before and 10 weeks after the course. At baseline, there was no significant difference in MRT scores between course participants and controls. At the end of the course, participants achieved a greater improvement than controls (first-year: ∆6.0 ± 4.1 vs. ∆4.9 ± 3.2; ANCOVA, P = 0.019, Cohen's d = 0.41; second-year: ∆6.5 ± 3.3 vs. ∆6.1 ± 4.0; P = 0.03, Cohen's d = 0.11). Individuals with initially lower scores on the MRT pretest showed the largest improvement (∆8.4 ± 2.3 vs. ∆6.8 ± 2.8; P = 0.011, Cohen's d = 0.61). In summary, (1) an anatomy dissection course improved visual-spatial abilities of medical undergraduates; (2) a substantial improvement was observed in individuals with initially lower scores on the visual-spatial abilities test indicating a different trajectory of improvement; (3) students' preferences for attending extracurricular anatomy dissection course was not driven by visual-spatial abilities.  相似文献   

15.
Spatial ability (SA) is the cognitive capacity to understand and mentally manipulate concepts of objects, remembering relationships among their parts and those of their surroundings. Spatial ability provides a learning advantage in science and may be useful in anatomy and technical skills in health care. This study aimed to assess the relationship between SA and anatomy scores in first- and second-year medical students. The training sessions focused on the analysis of the spatial component of objects' structure and their interaction as applied to medicine; SA was tested using the Visualization of Rotation (ROT) test. The intervention group (n = 29) received training and their pre- and post-training scores for the SA tests were compared to a control group (n = 75). Both groups improved their mean scores in the follow-up SA test (P < 0.010). There was no significant difference in SA scores between the groups for either SA test (P = 0.31, P = 0.90). The SA scores for female students were significantly lower than for male students, both at baseline and follow-up (P < 0.010). Anatomy training and assessment were administered by the anatomy department of the medical school, and examination scores were not significantly different between the two groups post-intervention (P = 0.33). However, participants with scores in the bottom quartile for SA performed worse in the anatomy questions (P < 0.001). Spatial awareness training did not improve SA or anatomy scores; however, SA may identify students who may benefit from additional academic support.  相似文献   

16.
Quality of healthcare delivery is dependent on collaboration between professional disciplines. Integrating opportunities for interprofessional learning in health science education programs prepares future clinicians to function as effective members of a multi‐disciplinary care team. This study aimed to create a modified team‐based learning (TBL) environment utilizing ultrasound technology during an interprofessional learning activity to enhance musculoskeletal anatomy knowledge of first year medical (MD) and physical therapy (PT) students. An ultrasound demonstration of structures of the upper limb was incorporated into the gross anatomy courses for first‐year MD (n = 53) and PT (n = 28) students. Immediately before the learning experience, all students took an individual readiness assurance test (iRAT) based on clinical concepts regarding the assigned study material. Students observed while a physical medicine and rehabilitation physician demonstrated the use of ultrasound as a diagnostic and procedural tool for the shoulder and elbow. Following the demonstration, students worked within interprofessional teams (n = 14 teams, 5–6 students per team) to review the related anatomy on dissected specimens. At the end of the session, students worked within interprofessional teams to complete a collaborative clinical case‐based multiple choice post‐test. Team scores were compared to the mean individual score within each team with the Wilcoxon signed‐rank test. Students scored higher on the collaborative post‐test (95.2 ±10.2%) than on the iRAT (66.1 ± 13.9% for MD students and 76.2 ±14.2% for PT students, P < 0.0001). Results suggest that this interprofessional team activity facilitated an improved understanding and clinical application of anatomy. Anat Sci Educ 11: 94–99. © 2017 American Association of Anatomists.  相似文献   

17.
Binocular disparity provides one of the important depth cues within stereoscopic three-dimensional (3D) visualization technology. However, there is limited research on its effect on learning within a 3D augmented reality (AR) environment. This study evaluated the effect of binocular disparity on the acquisition of anatomical knowledge and perceived cognitive load in relation to visual-spatial abilities. In a double-center randomized controlled trial, first-year (bio)medical undergraduates studied lower extremity anatomy in an interactive 3D AR environment either with a stereoscopic 3D view (n = 32) or monoscopic 3D view (n = 34). Visual-spatial abilities were tested with a mental rotation test. Anatomical knowledge was assessed by a validated 30-item written test and 30-item specimen test. Cognitive load was measured by the NASA-TLX questionnaire. Students in the stereoscopic 3D and monoscopic 3D groups performed equally well in terms of percentage correct answers (written test: 47.9 ± 15.8 vs. 49.1 ± 18.3; P = 0.635; specimen test: 43.0 ± 17.9 vs. 46.3 ± 15.1; P = 0.429), and perceived cognitive load scores (6.2 ± 1.0 vs. 6.2 ± 1.3; P = 0.992). Regardless of intervention, visual-spatial abilities were positively associated with the specimen test scores (η2 = 0.13, P = 0.003), perceived representativeness of the anatomy test questions (P = 0.010) and subjective improvement in anatomy knowledge (P < 0.001). In conclusion, binocular disparity does not improve learning anatomy. Motion parallax should be considered as another important depth cue that contributes to depth perception during learning in a stereoscopic 3D AR environment.  相似文献   

18.
Tuebingen's Sectio Chirurgica (TSC) is an innovative, interactive, multimedia, and transdisciplinary teaching method designed to complement dissection courses. The Tuebingen's Sectio Chirurgica (TSC) allows clinical anatomy to be taught via interactive live stream surgeries moderated by an anatomist. This method aims to provide an application‐oriented approach to teaching anatomy that offers students a deeper learning experience. A cohort study was devised to determine whether students who participated in the TSC were better able to solve clinical application questions than students who did not participate. A total of 365 students participated in the dissection course during the winter term of the 2012/2013 academic year. The final examination contained 40 standard multiple‐choice (S‐MC) and 20 clinically‐applied multiple‐choice (CA‐MC) items. The CA‐MC items referred to clinical cases but could be answered solely using anatomical knowledge. Students who regularly participated in the TSC answered the CA‐MC questions significantly better than the control group (75% and 65%, respectively; P < 0.05, Mann‐Whitney U test). The groups exhibited no differences on the S‐MC questions (85% and 82.5%, respectively; P > 0.05). The CA‐MC questions had a slightly higher level of difficulty than the S‐MC questions (0.725 and 0.801, respectively; P = 0.083). The discriminatory power of the items was comparable (S‐MC median Pearson correlations: 0.321; CA‐MC: 0.283). The TSC successfully teaches the clinical application of anatomical knowledge. Students who attended the TSC in addition to the dissection course were able to answer CA‐MC questions significantly better than students who did not attend the TSC. Thus, attending the TSC in addition to the dissection course supported students' clinical learning goals. Anat Sci Educ 10: 46–52. © 2016 American Association of Anatomists.  相似文献   

19.
Polarized light imaging (PLI) is a new method which quantifies and visualizes nerve fiber direction. In this study, the educational value of PLI sections of the human brainstem were compared to histological sections stained with Luxol fast blue (LFB) using e-learning modules. Mental Rotations Test (MRT) was used to assess the spatial ability. Pre-intervention, post-intervention, and long-term (1 week) anatomical tests were provided to assess the baseline knowledge and retention. One-on-one electronic interviews after the last test were carried out to understand the students’ perceptions of the intervention. Thirty-eight medical students, (19 female and 19 males, mean age 21.5 ± SD 2.4; median age: 21.0 years) participated with a mean MRT score of 13.2 ± 5.2 points and a mean pre-intervention knowledge test score of 49.9 ± 11.8%. A significant improvement in both, post-intervention and long-term test scores occurred after learning with either PLI or LFB e-learning module on brainstem anatomy (both P < 0.001). No difference was observed between groups in post-intervention test scores and long-term test scores (P = 0.913 and P = 0.403, respectively). A higher MRT-score was significantly correlated with a higher post-intervention test score (rk = 0.321; P < 0.05, respectively), but there was not a significant association between the MRT- and the long-term scores (rk = −0.078; P = 0.509). Interviews (n = 10) revealed three major topics: Learning (brainstem) anatomy by use of e-learning modules; The “need” of technological background information when studying brainstem sections; and Mnemonics when studying brainstem anatomy. Future studies should assess the cognitive burden of cross-sectional learning methods with PLI and/or LFB sections and their effects on knowledge retention.  相似文献   

20.
Students' motivation is a vital determinant of academic performance that is influenced by the learning environment. This study aimed to assess and analyze the motivation subscales between different cohorts (chiropractic, dental, medical) of anatomy students (n = 251) and to investigate if these subscales had an effect on the students' anatomy performance. A 31-item survey, the Motivated Strategies for Learning Questionnaire was utilized, covering items on intrinsic and extrinsic goal orientation, task value, control of learning belief, self-efficiency for learning and performance, and test anxiety. First-year dental students were significantly more anxious than chiropractic students. Second-year chiropractic students attached more value to anatomy education than second-year medical students. The outcome of this research demonstrated a significant relationship between first- and second-year chiropractic students between anatomy performance and motivation subscales controlling for gender such as self-efficacy for learning and performance was (β = 8, CI: 5.18–10.8, P < 0.001) and (β = 6.25, CI: 3.40–9.10, P < 0.001) for first year and second year, respectively. With regards to intrinsic goal orientation, it was (β = 4.02, CI: 1.19–6.86, P = 0.006) and (β = 5.38, CI: 2.32–8.44, P = 0.001) for first year and second year, respectively. For the control of learning beliefs, it was (β = 3.71, 95% CI: 0.18–7.25, P = 0.04) and (β = 3.07, CI: 0.03–6.12, P = 0.048) for first year and second year, respectively. Interventions aimed at improving these motivation subscales in students could boost their anatomy performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号