首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大家知道,公差是d的数列{a_n}的通项为:a_n=a_1 (n-1)d,即a_n=dn (a_1-d),可以把它看做n的一次函数,其图像是以d为斜率,纵轴截距为a_1-d的一条直线。当n∈N时,在直线上的对应点为(1,a_1),(2,a_2)…,(n,a_n)的点集,是该直线点集的一个子集。我们可以利用这种关系,巧解有关等差数列问题。例1 已知等差数列{a_n}的项a_m=n,a_n=m(m≠  相似文献   

2.
我们知道,若把等差数列{a_n}的通项公式a_n=a_1 (n-1)d写成a_n=dn (a_1-d),则上式表明点(n,a_n)(n∈N~*)均在直线  相似文献   

3.
(一) 解等差数列的有关问题。我们把等差数列的通项公式变形为a_n=dn+(a_1-d)(d≠0),易见它是关于n的一次式。这便表明:从几何上研究等差数列,就是线性函数y=dx+(a_1-d)(x∈R)时的有序点的图象上当自变量x依次取自然数列,而公差d就是点列所在直线的斜率。  相似文献   

4.
等差数列的通项可以表示为a_n=dn+(a_1-d),从函数的观点看,点列(n,a_n)在直线y=kx+b(k=d,b=a_1-d)上.故有下面的命题:命题若{a_n}是等差数列,则点列(n,a_n)在同一条直线上.  相似文献   

5.
1992年高考数学(理科)第27题,若结合图形,解法就变得简单、直观。题目是“设等差数列{a_n}的前n项和为S_n。已知a_3=12,S_(12)>0,S_(13)<0。 (1)求公差d的取值范围; (2)指出S_1,S_2,…,S_(12)中哪一个值最大,并说明理由。”解(1)由于等差数列{a_n}的通项公式可写为a_n=d·n (a_1-d),所以点(1,a_1)、(2,a_2)、…、(n,a_n)分布在一条直线l上,l的斜率即为公差d,且它过定点A(3,12)。(如图)。由于对称性,当S_(12)=0时,直线l通过线段BC的中点E(6.5,0);当S_(13)=0时,l通过线段BD的中点F(7,0)。因为S_(12)>0,S_(13)<0,所以满足题目条件的直线在直线AE与AF之间变动  相似文献   

6.
我们熟知这样一个显然的事实:把等差数列的通项公式变形为a_n=dn (a_1-d)所得到的是a_n关于n的一次式,这就表明,若从几何上考察等差数列,易知{a_n}乃是线性函数y=dx (a_1-d)的图象上当x依次取自然数时的一列有序点列.另外,因为一次函数y=dx (a_1-d)又可看作表示一条直线的方程,它仅由平面上的两定点来确定,因而问题便给我们提  相似文献   

7.
在等差数列的通项公式a_n=a_1 (n-1)d中,通项a_n可以看成是项数n的一次函数(它的定义域是自然数),对一切n∈N,点(n,a_n)共线。 又等差数列前n项和的公式S_n=na_1 (n(n-1)/2)d,可以变形为以下形式,即S_n=(d/2)n~2 (a_1-(d/2))n。因此,公差不等于零的等差数列,前n项的和S_n可以看成是关于n的常数项为零的二次函数,即S_n=an~2  相似文献   

8.
<正>等差数列的性质是高考考查重点之一,面对众多的性质,我们如何灵活利用这些性质来解题呢?本文将对等差数列的一个重要性质作出推广,并用所得结论解决一类等差数列的"和问题"。公差为d的等差数列{a_n}的通项公式为a_n=a_1+(n-1)d(n∈N*),若函数f(x)=dx+(a_1-d)(x∈R),则有a_n=f(n)。本  相似文献   

9.
我们知道,等差数列的通项公式a_n=a_1 (n-1)d,通项a_n可看成是项数n的一次函数,(严格地说,其定义域是自然数),对一切n∈N,点(n,a_n)共线。  相似文献   

10.
在等差数列的通项公式a_n=a_1+(n-1)d(?)dn-a_n+(a_1-d)=0中,若令dn=Ax,a_n=y,a_1-d=c,上式就是Ax-y+c=0,于是等差数列中的各项就是直线Ax-y+c=0中x∈N时各点的纵坐标。既然如此,用直线方程的知识处理有关等差数列问题,不但是可行的,而且由下述例子知其方法也是简捷和别具一格的。现编举数例说明之。例1 等差数列{a_n}和{b_n},a_1、b_1、d_1、d_2分别为其首项和公差,且(b_1-a_1)/(d_1-d_2)∈N,求证{a_n}和{b_n}中必有a_m=b_m,并求出m和a_m,b_m。  相似文献   

11.
众所周知,等差数列{an}的通项公式an=a1+(n-1)d可变形写成:an=dn+(a1-d),这个式子的几何意义是点列An(n,an)(n∈N+)在直线y=dx+(a1-d)上.同样,等差数列{an}的前n项和公式sn=na1+n(n2-1)d可变形为:snn=a1+n-12d=2dn+(a1-2d),它也可看成是点列An(n,snn)在直线y=2dx+(a1-2d)上.于是得到以下两个结论:结论1等差数列{an}的通项公式an=a1+(n-1)d,则点(1,a1),(2,a2),(3,a3),…,(n,an)…共线.结论2等差数列{an}的前n项和sn=na1+n(n2-1)d,{sn}为等差数列的前n项和组成的数列,则点(1,s11),(2,s22),(3,s33),…,(n,snn)…共线.例1已知等差数列{an},a4=…  相似文献   

12.
等差数列通项公式a_n=a_1+(n-1)d可以写成a_n=kn+b(n∈N~N)的形式,这是关于n的一次函数,与直线方程形式一致,仅定义域不同,那么直线上的定比分点公式在等差数列中是否成立呢?下面给出相应的命题并进行证明。  相似文献   

13.
由等差数列{an}的通项公式an=a1 (n-1)d可得an=nd (a1-d)(n∈N),显然,当d≠0时,an是关于自然数n的一次函数.它的几何意义是以d为斜率,在y轴上的截距为a1-d的一条直线上的点集.点的坐标为(n,an),其中n∈N.  相似文献   

14.
众所周知,等差数列{a_n}的通项公式为a_n=a_1 (n-1)d (其中a_1为首项,d为公差)等比数列的通项公式为a_n=a_1q~(n-1)(其中a_1为首项,q为公比)笔者在多年的教学中,认为这两个公式可推广,且推广后的公式更实用。下面是推广后的公式:Ⅰ、已知等差数列{a_n}的第K项为a_k(k=1,2,3……)公差为d,则{a_n}的通项公式为:  相似文献   

15.
教材中对等差数列的概念、通项公式 a_n=a_1 (n-1)d,前 n 项和的公式 s_n=n(a_1 a_n)/2中的五个基本量 a_1,d,n,a_n,S_n,只要求“知三求二”.但在竞赛题中有一大类较特殊的数列求前 n 项之和用以上知识不易解决.本文先给出关于等差数列的一个重要定理,并给出完整的证  相似文献   

16.
<正>近日和学生复习数列时遇到这样一道题目:数列{a_n}满足a_1=2,a_(n+1)=a_n+3,求通项公式a_n。这其实是个很简单的问题,学生看到该题就能发现a_(n+1)-a_n=3,符合等差数列的定义,知道这是一个等差数列,公差是3,首项是2,从而得到通项公式a_n=3_n-1。完成该题后让学生探讨新的方法解决这道题目,展开讨论。  相似文献   

17.
我们知道,等差数列{an]通项公式为:an=a1+(n-1)d=dn+(a1-d),前n项和公式为:Sn=na1+n(n-1)/2d=d/2n^2+(a1-d/2)n,因而Sn/n=d/2n+(a1-d/2)。由解析几何知识可知,点(n,an)在斜率为d的直线上,点(n,Sn/n)都在斜率为d/2的直线上,利用好这一结论就能给解题带来极大的方便。  相似文献   

18.
设数列{a_n}是公差为d(d≠0)的等差数列。若令a_0=a_1-d,a_(n 1)=a_n d,则① a_1 a_2 … a_n=(1/2d)(a_na_(n 1)-a_0a_1); ② a_1~3 a_2~3 … a_n~3=(1/4d)[(a_na_(n 1))~2-(a_0a_1)~2]。证①∵ a_ka_(k 1)-a_(k-1)a_k=a_k(a_(k 1)-a_(k-1)=2da_k,k=1,2,…。令k=1,2,…,n, 得n个等式,将它们的两边分别相加得 a_na_(a 1)-a_0a_1=2d(a_1 a_2 … a_n)。∴ a_1 a_2 … a_n=(1/(2d))(a_na_(n 1)-a_0a_1)。②∵ (a_ka_(k 1))~2-(a_(k-1)a_k)~2=a_k~2[a_(k 1)~2  相似文献   

19.
高中代数(甲种本)第二册77页上有这样一道习题: 已知数列{a_n}的项满足 a_1=b a_(n+1)=ca_n+d(c≠1),证明这个数列的通项公式是 a_n=(bc~n+(d-b)c~(n-1)-d)/(c-1) 我们把这题推广成: 已知数列{a_n}的项满足 a_1=a a_(n+1)-ba_n=c_0+c_1n+c_2n~2+…+c_mn~m,其中b≠0,求这个数列的通项公式. 这类问题,可以用待定系数法解决.以  相似文献   

20.
等差数列是最简形式的数列,中学数学教材里给出三个公式:a_n=a_1+(n-1)d,S_n=1/2n(a_1+a_n),S_n=na_1+1/2n(n-1)d。但有的题目用上述公式不大方便,例如已知任意两项求某一项或求和;已知前 k 项前 l 项的和求前 n 项和等等。上述问题按常规解法需解方程或方程组,运算较繁。贵刊1982年第一期倪承源同志的《等差数列的两个公式》一文,运用行列式知识给出两个定理,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号