首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Students in undergraduate premedical anatomy courses may experience suboptimal and superficial learning experiences due to large class sizes, passive lecture styles, and difficult-to-master concepts. This study introduces an innovative, hands-on activity for human musculoskeletal system education with the aim of improving students’ level of engagement and knowledge retention. In this study, a collaborative learning intervention using the REFLECT (augmented reality for learning clinical anatomy) system is presented. The system uses the augmented reality magic mirror paradigm to superimpose anatomical visualizations over the user’s body in a large display, creating the impression that she sees the relevant anatomic illustrations inside her own body. The efficacy of this proposed system was evaluated in a large-scale controlled study, using a team-based muscle painting activity among undergraduate premedical students (n = 288) at the Johns Hopkins University. The baseline knowledge and post-intervention knowledge of the students were measured before and after the painting activity according to their assigned groups in the study. The results from knowledge tests and additional collected data demonstrate that the proposed interactive system enhanced learning of the musculoskeletal system with improved knowledge retention (F(10,133) = 3.14, < 0.001), increased time on task (F(1,275) = 5.70, < 0.01), and a high level of engagement (F(9,273) = 8.28, < 0.0001). The proposed REFLECT system will be of benefit as a complementary anatomy learning tool for students.  相似文献   

2.
Polarized light imaging (PLI) is a new method which quantifies and visualizes nerve fiber direction. In this study, the educational value of PLI sections of the human brainstem were compared to histological sections stained with Luxol fast blue (LFB) using e-learning modules. Mental Rotations Test (MRT) was used to assess the spatial ability. Pre-intervention, post-intervention, and long-term (1 week) anatomical tests were provided to assess the baseline knowledge and retention. One-on-one electronic interviews after the last test were carried out to understand the students’ perceptions of the intervention. Thirty-eight medical students, (19 female and 19 males, mean age 21.5 ± SD 2.4; median age: 21.0 years) participated with a mean MRT score of 13.2 ± 5.2 points and a mean pre-intervention knowledge test score of 49.9 ± 11.8%. A significant improvement in both, post-intervention and long-term test scores occurred after learning with either PLI or LFB e-learning module on brainstem anatomy (both P < 0.001). No difference was observed between groups in post-intervention test scores and long-term test scores (P = 0.913 and P = 0.403, respectively). A higher MRT-score was significantly correlated with a higher post-intervention test score (rk = 0.321; P < 0.05, respectively), but there was not a significant association between the MRT- and the long-term scores (rk = −0.078; P = 0.509). Interviews (n = 10) revealed three major topics: Learning (brainstem) anatomy by use of e-learning modules; The “need” of technological background information when studying brainstem sections; and Mnemonics when studying brainstem anatomy. Future studies should assess the cognitive burden of cross-sectional learning methods with PLI and/or LFB sections and their effects on knowledge retention.  相似文献   

3.
Three-dimensional (3D) digital anatomical models show potential to demonstrate complex anatomical relationships; however, the literature is inconsistent as to whether they are effective in improving the anatomy performance, particularly for students with low spatial visualization ability (Vz). This study investigated the educational effectiveness of a 3D stereoscopic model of the pelvis, and the relationship between learning with 3D models and Vz. It was hypothesized that participants learning with a 3D pelvis model would outperform participants learning with a two-dimensional (2D) visualization or cadaveric specimen on a spatial anatomy test, particularly when comparing those with low Vz. Participants (n = 64) were stratified into three experimental groups, who each attended a learning session with either a 3D stereoscopic model (n = 21), 2D visualization (n = 21), or cadaveric specimen (n = 22) of the pelvis. Medical and pre-medical student participants completed a multiple-choice pre-test and post-test during their respective learning session, and a long-term retention (LTR) test 2 months later. Results showed no difference in anatomy test improvement or LTR performance between the experimental groups. A simple linear regression analysis showed that within the 3D group, participants with high Vz tended to retain more than those with low Vz on the LTR test (R2 = 0.31, P = 0.01). The low Vz participants may be cognitively overloaded by the complex spatial cues from the 3D stereoscopic model. Results of this study should inform resource selection and curriculum design for health professional students, with attention to the impact of Vz on learning.  相似文献   

4.
Anatomy is a key knowledge area in chiropractic and is formally offered in the undergraduate component of chiropractic education. There is the potential for loss of anatomy knowledge before the opportunity to apply it in a clinical setting. This study aimed to determine whether chiropractic clinicians retain a level of anatomy knowledge comparable to that of chiropractic students and to compare chiropractors' self-rating of their anatomical knowledge against an objective knowledge assessment tool. A previously validated multiple-choice test was utilized to measure retention of limb musculoskeletal (MSK) knowledge in Australian chiropractors. One hundred and one registered chiropractors completed the questionnaire and responses were scored, analyzed, and compared to scores attained by undergraduate and postgraduate chiropractic students who had previously completed the same questionnaire. The results indicated that practitioners retained their anatomy knowledge, with a significantly higher total mean score than the undergraduate group [total mean score = 36.5% (±SD 13.6%); P < 0.01] but not significantly different to the postgraduate group [total mean score = 52.2% (±SD 14.1%); P = 0.74]. There was a weak positive correlation between chiropractors' self-rated knowledge and test performance scores indicating the effectiveness of this Australian chiropractic group in self-assessing their anatomy knowledge. This study found that Australian chiropractors' knowledge of MSK anatomy was retained during the transition from university to clinical practice and they accurately evaluated their own test performance.  相似文献   

5.
There is growing demand from accrediting agencies for improved basic science integration into fourth-year medical curricula and inculcation of medical students with teaching skills. The objective of this study was to determine the effectiveness of a fourth-year medical school elective course focused on teaching gross anatomy on anatomical knowledge and teaching confidence. Fourth-year medical student “teacher” participants' gross anatomy knowledge was assessed before and after the course. Students rated their overall perceived anatomy knowledge and teaching skills on a scale from 0 (worst) to 10 (best), and responded to specific knowledge and teaching confidence items using a similar scale. First-year students were surveyed to evaluate the effectiveness of the fourth-year student teaching on their learning. Thirty-two students completed the course. The mean anatomy knowledge pretest score and posttest scores were 43.2 (±22.1) and 74.1 (±18.4), respectively (P < 0.001). The mean perceived anatomy knowledge ratings before and after the course were 6.19 (±1.84) and 7.84 (±1.30), respectively (P < 0.0001) and mean perceived teaching skills ratings before and after the course were 7.94 (±1.24) and 8.53 (±0.95), respectively (P = 0.002). Student feedback highlighted five themes which impacted fourth-year teaching assistant effectiveness, including social/cognitive congruence and improved access to learning opportunities. Together these results suggest that integrating fourth-year medical students in anatomy teaching increases their anatomical knowledge and improves measures of perceived confidence in both teaching and anatomy knowledge. The thematic analysis revealed that this initiative has positive benefits for first-year students.  相似文献   

6.
Human cadaveric prosections are a traditional, effective, and highly appreciated modality of anatomy learning. Plastic models are an alternative teaching modality, though few studies examine their effectiveness in learning of upper limb musculoskeletal anatomy. The purpose of this study is to investigate which modality is associated with a better outcome, as assessed by students' performance on examinations. Overall, 60 undergraduate medical students without previous knowledge of anatomy participated in the study. Students were assigned into two groups. Group 1 attended lectures and studied from cadaveric prosections (n = 30) and Group 2 attended lectures and used plastic models in the laboratory (n = 30). A knowledge assessment, including examination with tag questions (spot test) and written multiple-choice questions, was held after the end of the study. Students' perceptions were also investigated via an anonymous questionnaire. No significant difference in students' performance was observed between the group using prosections and the group using plastic models (32.2 ± 14.7 vs 35.0 ± 14.8, respectively; P = 0.477). Similarly, no statistically significant difference was found regarding students' satisfaction from using each learning modality (P = 0.441). Plastic models may be a valuable supplementary modality in learning upper limb musculoskeletal anatomy, despite their limitations. Easy to use and with no need for maintaining facilities, they are highly appreciated by students and can be useful when preparing for the use of cadaveric specimens.  相似文献   

7.
The novelty of three-dimensional visualization technology (3DVT), such as virtual reality (VR), has captured the interest of many educational institutions. This study’s objectives were to (1) assess how VR and physical models impact anatomy learning, (2) determine the effect of visuospatial ability on anatomy learning from VR and physical models, and (3) evaluate the impact of a VR familiarization phase on learning. This within-subjects, crossover study recruited 78 undergraduate students who studied anatomical structures at both physical and VR models and were tested on their knowledge immediately and 48 hours after learning. There were no significant differences in test scores between the two modalities on both testing days. After grouping participants on visuospatial ability, low visuospatial ability learners performed significantly worse on anatomy knowledge tests compared to their high visuospatial ability counterparts when learning from VR immediately (P = 0.001, d = 1.515) and over the long-term (P = 0.003, d = 1.279). In contrast, both low and high visuospatial ability groups performed similarly well when learning from the physical model and tested immediately after learning (P = 0.067) and over the long-term (P = 0.107). These results differ from current literature which indicates that learners with low visuospatial ability are aided by 3DVT. Familiarizing participants with VR before the learning phase had no impact on learning (P = 0.967). This study demonstrated that VR may be detrimental to low visuospatial ability students, whereas physical models may allow all students, regardless of their visuospatial abilities, to learn similarly well.  相似文献   

8.
The aim of this study was to investigate the effect of immersive three-dimensional (3D) interactive virtual reality (VR) on anatomy training in undergraduate physical therapy students. A total of 72 students were included in the study. The students were randomized into control (n = 36) and VR (n = 36) group according to the Kolb Learning Style Inventory, sex, and Purdue Spatial Visualization Test Rotations (PSVT-R). Each student completed a pre-intervention and post-intervention test, consisting of 15 multiple-choice questions. There was no significant difference between the two groups in terms of age, sex, Kolb Learning Style Inventory distribution, and the PSVT-R (P > 0.05). The post-test scores were significantly higher compared to pre-test scores in both the VR group (P < 0.001) and the control group (P < 0.001). The difference between the pre-test and post-test results was found to be significantly higher in favor of the VR group (P < 0.001). In this study, anatomy training with a 3D immersive VR system was found to be beneficial. These results suggest that VR systems can be used as an alternative method to the conventional anatomy training approach for health students.  相似文献   

9.
Teaching internal structures obscured from direct view is a major challenge of anatomy education. High-fidelity interactive three-dimensional (3D) micro-computed tomography (CT) models with virtual dissection present a possible solution. However, their utility for teaching complex internal structures of the human body is unclear. The purpose of this study was to investigate the use of a realistic 3D micro-CT interactive visualization computer model to teach paranasal sinus anatomy in a laboratory setting during pre-clinical medical training. Year 1 (n = 79) and Year 2 (n = 59) medical students undertook self-directed activities focused on paranasal sinus anatomy in one of two laboratories (traditional laboratory and 3D model). All participants completed pre and posttests before and after the laboratory session. Results of regression analyses predicting post-laboratory knowledge indicate that, when students were inexperienced with the 3D computer technology, use of the model was detrimental to learning for students with greater prior knowledge of the relevant anatomy (P < 0.05). For participants experienced with the 3D computer technology, however, the use of the model was detrimental for students with less prior knowledge of the relevant anatomy (P < 0.001). These results emphasize that several factors need to be considered in the design and effective implementation of such models in the classroom. Under the right conditions, the 3D model is equal to traditional laboratory resources when used as a learning tool. This paper discusses the importance of preparatory training for students and the technical consideration necessary to successfully integrate such models into medical anatomical curricula.  相似文献   

10.
Innovative reforms in medical education will require instructional tools to support these changes and to give students more flexibility in where and how they learn. At Colorado State University, the software program Virtual Canine Anatomy (VCA) was developed to assist student learning both inside and outside the anatomical laboratory. The program includes interactive anatomical photographs of dissected canine cadavers, dissection instructions with accompanying videos and diagrams, radiographs, and three-dimensional models. There is a need to evaluate the effectiveness of instructional tools like VCA so that decisions on pedagogical delivery can be evidence-based. To measure the impact of VCA on student outcomes in a dissection laboratory, this study compared student attitudes, quiz scores, dissection quality and accuracy, and instructor reliance between students with and without access to VCA. Students with VCA needed less time with teaching assistants (P < 0.01), asked teaching assistants fewer questions (P = 0.04), felt that the dissection was easier (P = 0.02), and were in stronger agreement that they had access to adequate resources (P = 0.02). No differences were found in the dissection quality or accuracy, quiz scores, or attitudes regarding overall enjoyment of the activity between the two groups. This study shows that VCA increases student independence and can be used to enhance anatomical instruction.  相似文献   

11.
Monoscopically projected three-dimensional (3D) visualization technology may have significant disadvantages for students with lower visual-spatial abilities despite its overall effectiveness in teaching anatomy. Previous research suggests that stereopsis may facilitate a better comprehension of anatomical knowledge. This study evaluated the educational effectiveness of stereoscopic augmented reality (AR) visualization and the modifying effect of visual-spatial abilities on learning. In a double-center randomized controlled trial, first- and second-year (bio)medical undergraduates studied lower limb anatomy with stereoscopic 3D AR model (n = 20), monoscopic 3D desktop model (n = 20), or two-dimensional (2D) anatomical atlas (n = 18). Visual-spatial abilities were tested with Mental Rotation Test (MRT), Paper Folding Test (PFT), and Mechanical Reasoning (MR) Test. Anatomical knowledge was assessed by the validated 30-item paper posttest. The overall posttest scores in the stereoscopic 3D AR group (47.8%) were similar to those in the monoscopic 3D desktop group (38.5%; P = 0.240) and the 2D anatomical atlas group (50.9%; P = 1.00). When stratified by visual-spatial abilities test scores, students with lower MRT scores achieved higher posttest scores in the stereoscopic 3D AR group (49.2%) as compared to the monoscopic 3D desktop group (33.4%; P = 0.015) and similar to the scores in the 2D group (46.4%; P = 0.99). Participants with higher MRT scores performed equally well in all conditions. It is instrumental to consider an aptitude–treatment interaction caused by visual-spatial abilities when designing research into 3D learning. Further research is needed to identify contributing features and the most effective way of introducing this technology into current educational programs.  相似文献   

12.
Basic subjects in medical education, such as anatomy, are often taught through teaching formats that do not always sufficiently demonstrate the relevance of this basic information for clinical practice. Accordingly, it is a recent trend in anatomy education to link anatomical information more explicitly to clinical practice. This article presents an online video platform (Tuebingen’s Sectio Chirurgica [TSC]) as one means of explicitly integrating preclinical anatomical knowledge and clinical application. The purpose of the study presented here was to examine the effects of videos through which medical students were educated about Anterior Cruciate Ligament reconstruction. A TSC video about this surgical procedure was compared to a video with a traditional lecture providing the identical information. Participants (n = 114) perceived the TSC video to be superior in comprehensibility of the presentation (P = 0.003) and conceivability of the surgical procedure (P = 0.027), and to be more entertaining (P < 0.001). Moreover, participants in the TSC condition acquired more clinical knowledge than in the lecture condition (P = 0.043) but did not differ in their acquisition of anatomical knowledge. Mediation analyses indicated that the effect on the acquisition of clinical knowledge was mediated by comprehensibility, conceivability, and entertainment. These findings are discussed regarding their implications for medical education in terms of contributing to the general trend of linking preclinical anatomical knowledge to clinical application. A discussion about the limitations of the study and suggestions for future research are also provided.  相似文献   

13.
In recent decades, three-dimensional (3D) printing as an emerging technology, has been utilized for imparting human anatomy knowledge. However, most 3D printed models are rigid anatomical replicas that are unable to represent dynamic spatial relationships between different anatomical structures. In this study, the data obtained from a computed tomography (CT) scan of a normal knee joint were used to design and fabricate a functional knee joint simulator for anatomical education. Utility of the 3D printed simulator was evaluated in comparison with traditional didactic learning in first-year medical students (n = 35), so as to understand how the functional 3D simulator could assist in their learning of human anatomy. The outcome measure was a quiz comprising 11 multiple choice questions based on locking and unlocking of the knee joint. Students in the simulation group (mean score = 85.03%, ±SD 10.13%) performed significantly better than those in the didactic learning group, P < 0.05 (mean score = 70.71%, ±SD 15.13%), which was substantiated by large effect size, as shown by a Cohen’s d value of 1.14. In terms of learning outcome, female students who used 3D printed simulators as learning aids achieved greater improvement in their quiz scores as compared to male students in the same group. However, after correcting for the modality of instruction, the sex of the students did not have a significant influence on the learning outcome. This randomized study has demonstrated that the 3D printed simulator is beneficial for anatomical education and can help in enriching students’ learning experience.  相似文献   

14.
Gross anatomy is a source of anxiety for matriculating medical students due to the large volume of information presented in a truncated timeline, and because it may be their first exposure to human cadavers. This study aimed to assess if video-based resources would affect matriculating medical students' anatomy state anxiety levels. Videos were designed to be short, YouTube-based units that served to provide orientation information about the anatomy course, dissection facilities, and available study resources to dispel anxiety around beginning their anatomy studies. To evaluate the impact of the videos, students in two consecutive matriculating years (2018 and 2019) completed the validated State-Trait Anxiety Inventory and a demographic questionnaire. The 2019 cohort (n = 118) served as the experimental group with access to the videos; while the 2018 cohort (n = 120) without video access served as a historical control. Analyses revealed that the groups were equivalent in terms of trait anxiety (P = 0.854) and anatomy state anxiety even when student video exposure was controlled (P = 0.495). Anatomy state anxiety was only significantly lower in students with prior formal anatomy exposure (P = 0.006). Further inquiry into students' prior anatomy experience identified that individuals with post-secondary dissection experience were significantly less anxious than those without formal anatomical experience (P = 0.023). These results may serve as a cautionary tale to educators; while preference for video-based instructional materials is prevalent in the literature, videos delivered on public social media platforms fail to prepare students for the psychological impact of studying human anatomy.  相似文献   

15.
Recent advance in medical education is in correlation with the advances in information technology and thus computer-based learning is being increasingly employed. The objective of the present study was to design and evaluate an e-learning module in anatomy and assess the perceptions of students and faculty about this e-learning module. The participating students were randomized into three groups by block stratified randomization and Google groups were created for each of the three groups. The e-learning module was implemented in three sessions by rotating the three groups. Validated questionnaires were sent to faculty and participating students via Google forms to obtain feedback. The results of ANOVA showed that there was a significant difference among the groups in terms of marks obtained with conventional (F = 2.403, P = 0.103), online (F = 6.050, P = 0.005), and blended (F = 5.801, P = 0.006). Post hoc comparisons using the Tukey HSD test, about the gain of knowledge, indicated that the results were insignificant when comparing the conventional group with the online group, but were significant when comparing the blended group with the conventional and online group. The qualitative data regarding the perception of students toward e-learning were analyzed using thematic analysis. The introduction of an interactive e-learning module in anatomy was effective and well received by the students and faculty. The study showed that blended learning has a positive impact on the students' learning by improving cognitive gain and receptive perception for e-learning.  相似文献   

16.
Knowledge of embryology is foundational for understanding normal anatomy and birth defects, yet, embryology is a notoriously difficult subject for medical students. Embryonic lateral folding in particular is one of the most challenging concepts in embryology. Highly effective teaching methods that promote active engagement with dynamic, three-dimensional models may be helpful for teaching this content. The aim of this study was to determine whether a hands-on modeling activity utilizing premade crocheted pieces constructed from durable, inexpensive yarn helped medical students enrolled in a pre-matriculation course to understand embryonic lateral folding. Change in knowledge was assessed using a pre–post design. Students also completed subjective evaluations regarding their satisfaction with the activity. Quiz scores in means (±SD) increased from 62.7 (±24.1) % before the activity to 77.0 (±17.1) % after the activity (P = 0.0495, two-tailed paired t test; d = 0.68). Generally, students reported that the activity was helpful and enjoyable, and the model pieces were easy to manipulate. These promising results suggest that hands-on activities with dynamic, three-dimensional models constitute an effective method for teaching embryology.  相似文献   

17.
The synthetic cadaver is a high-fidelity model intended to replace or supplement other anatomy learning modalities. Academic attainment and student perceptions were examined in an undergraduate human anatomy course using a combination of plastic models and synthetic cadavers to learn lower body anatomy (“Experimental group”), compared to a Historical group who used only plastic models. Grades on an upper body test, for which both groups used only plastic models, were compared to ensure that no academic differences existed between groups (P = 0.7653). Students in the Experimental group performed better on the lower body test for which they used both plastic models and synthetic cadavers (median = 73.8% (95% CI: 72.0%-75.0%) compared to the Historical group (70.1% (95% CI: 68.3%-70.7%), P < 0.0001); however, less than half of students (49%) attributed this to the synthetic cadavers. Students' perception of laboratory resources (P < 0.0001) and learning experience (P < 0.0001) both improved with the addition of synthetic cadavers compared to using only plastic models, and 60% of students in the Experimental group agreed that the synthetic cadavers would be a key reason that they would choose that institution for undergraduate studies. This investigation showed improved student grades when plastic models and synthetic cadavers were combined, in addition to improved student perceptions of the learning experience. Results of the student questionnaires also suggested that although synthetic cadavers carry a notable up-front cost, they may be a useful recruitment tool for institutions.  相似文献   

18.
Game-based learning can have a positive impact on medical education, and virtual worlds have great potential for supporting immersive online games. It is necessary to reinforce current medical students' knowledge about radiological anatomy and radiological signs. To meet this need, the objectives of this study were: to design a competition-based game in the virtual world, Second Life and to analyze the students' perceptions of Second Life and the game, as well as to analyze the medium-term retention of knowledge and the potential impact on the final grades. Ninety out of 197 (45.6%) third-year medical students voluntarily participated in an online game based on self-guided presentations and multiple-choice tests over six 6-day stages. Participants and non-participants were invited to perform an evaluation questionnaire about the experience and a post-exposure knowledge test. Participants rated the experience with mean scores equal to or higher than 8.1 on a 10-point scale, highlighting the professor (9.5 ± 1.1; mean ± SD) and the virtual environment (8.9 ± 1.1). Participants had better results in the post-exposure test than non-participants (59.0 ± 13.5 versus 45.3 ± 11.5; P < 0.001) and a lower percentage of answers left blank (6.7 ± 8.4 versus 13.1 ± 12.9; P = 0.014). Competitive game-based learning within Second Life is an effective and well-accepted means of teaching core radiological anatomy and radiological signs content to medical students. The higher medium-term outcomes obtained by participants may indicate effective learning with the game. Additionally, valuable positive perceptions about the game, the educational contents, and the potential benefit for their education were discovered among non-participants.  相似文献   

19.
A student's own body provides an often disregarded site of knowledge production and corporeal wisdom. Learning via cognitive processes anchored in physical movement and body awareness, known as embodied learning, may aid students to visualize structures and understand their functions and clinical relevance. Working from an embodied learning perspective, the current article evaluates the use of an offline physical learning tool (Anatomical Glove Learning System; AGLS) for teaching hand anatomy for clinical application in medical students. Two student samples (N1 = 105; N2 = 94) used the AGLS in two different ways. In the first sample, the AGLS was compared to a traditional approach using hand bones, models and prosected specimens. Secondly, the AGLS and traditional approach were combined. The evaluation consisted of three outcomes: short-term learning (post-test), medium-term applications (mock-objective structured clinical examination, MOSCE), and longer-term assessment (objective structured clinical examination, OSCE). Findings from the first sample indicated no significant differences between the AGLS and traditional laboratory groups on short- (F(1,78) = 0.036, P = 0.849), medium- (F(1,50) = 0.743, P = 0.393), or longer-term (F(1,82) = 0.997, P = 0.321) outcomes. In the second sample using the AGLS in combination with a traditional approach was associated with significantly better short-term post-test scores (F(2,174) = 5.98, P = 0.003) than using the AGLS alone, but demonstrated no effect for long-term OSCE scores. These results suggest an embodied learning experience alone does not appear to be advantageous to student learning, but when combined with other methods for studying anatomy there are learning gains.  相似文献   

20.
Anatomical examinations have been designed to assess topographical and/or applied knowledge of anatomy with or without the inclusion of visual resources such as cadaveric specimens or images, radiological images, and/or clinical photographs. Multimedia learning theories have advanced the understanding of how words and images are processed during learning. However, the evidence of the impact of including anatomical and radiological images within written assessments is sparse. This study investigates the impact of including images within clinically oriented single-best-answer questions on students' scores in a tailored online tool. Second-year medical students (n = 174) from six schools in the United Kingdom participated voluntarily in the examination, and 55 students provided free-text comments which were thematically analyzed. All questions were categorized as to whether their stimulus format was purely textual or included an associated image. The type (anatomical and radiological image) and deep structure of images (question referring to a bone or soft tissue on the image) were taken into consideration. Students scored significantly better on questions with images compared to questions without images (P < 0.001), and on questions referring to bones than to soft tissue (P < 0.001), but no difference was found in their performance on anatomical and radiological image questions. The coding highlighted areas of “test applicability” and “challenges faced by the students.” In conclusion, images are critical in medical practice for investigating a patient's anatomy, and this study sets out a way to understand the effects of images on students' performance and their views in commonly employed written assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号