首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、三次函数的图象及其性质对于三次函数 y=f(x)=ax~3+bx~2+cx+d(a≠0),我们有 y′=f′(x)=3ax~2+2bx+c.设导函数 y′=f′(x)的判别式为△=4b~2-12ac=4(b~2-3ac).(1)当 a>0时,(i)若△>0,则方程 f′(x)=0有两个不等的实根。设两实根为 x_1,x_2(x_10、f(x_2)<0)时,图象与 x 轴有三个不同的  相似文献   

2.
用导数法求函数的极值,是求极值基本方法,在解决这类问题时,如果对法则、定理一知半解或理解不透,很容易造成极值点的遗漏.可导函数y=f(x)在某一点x_0处取得极值的必要条件是这一点x_0的导数f′(x_0)=0.因此求可导函数y=f(x)的极值可以按照下列步骤进行: ①先求函数y=f(x)的导数f′(x); ②令f′(x)=0求得根x_0; ③在x_0附近左右两侧判断f′(x_0)的符号,左正右负为极大值点,左负右正为极小值点.  相似文献   

3.
<正>例设函数f(x)=ex-1-x-ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时,f(x)≥0,求a的取值范围.参考答案如下:(1)a=0时,f(x)=ex-1-x,f′(x)=ex-1.当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.故f(x)在(-∞,0)上单调减少,在(0,+∞)上单调增加.  相似文献   

4.
设y=f(x)为可导函数。①在某个区间内,如果f(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数,反之亦然。②函数f(x)在某点取得极值的充要条件是该点的导数为零且该点两侧的导数异号。③函数f(x)在点x_0处的导数f′(x_0)是曲线y=f(x)在点(x_0,f(x_0))处切线的斜率。运用上述性质可解决下面几类问题。  相似文献   

5.
能取等号吗?     
函数 y=f(x)在 x=x_0处有极值,则它的导数 f′(x)在这点的函数值为零,即 f′(x_0)=0,反过来,函数 y=f(x)的导数在某点的函数值为零时,这点却不一定是函数的极值点.因此,我们必须具体问题具体分析.例1 已知 b>-1,c>0,函数 f(x)=x b 的图象与函数 g(x)=x~2 bx c 的图像相切.(1)求 b 与 c 的关系(用 c 表示 b)(2)设函数 F(x)=f(x)g(x)在(-∞, ∞)内有极值点,求 c 的取值范围.分析:(1)(略);(2)函数 F(x)=f(x)·g(x)在(-∞, ∞)内有极值点,即存在 x_0使F′(x_0)=0,亦即一元二次方程 F′(x)=0有实  相似文献   

6.
本文考虑了微分中值定理及积分中值定理的反问题,证明了下述结果:定理1 设函数f(x)及g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导.且对任意ξ∈(a,b).g′(ξ)>0,F(x)=F(x)-F(ξ)/g(x)-g(ξ)为x的严格增函数(除ξ点外)。那么存在x_1,x_2∈(a,b),x_1<ξ相似文献   

7.
1导函数f′(x)在x=x0处的极限与函数y=f(x)在x=x0处的可导性定理1若函数f(x)在(a,b)内连续,在(a,b)中除点x0外处处可导,且li mx→x0f′(x)存在,那么函数y=f(x)在x=x0处可导,且f′(x0)=lxi→mx0f′(x).证明:任取异于x0的x∈(a,b),在[x0,x]或[x,x0]上应用lagrange中值定理,有f(xx  相似文献   

8.
题目 已知函数f(x)=ex-ln(x+m). (Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (Ⅱ)当m≤2时,证明f(x)>0. (Ⅰ)略. (Ⅱ)解法1 当m≤2,x∈(-m,+∞)时,恒有ln(x+m)≤ln(x+2),即只需证明m=2时成立,即ex-ln(x+2)>0即可. 即证明ee|-x-2 >0. 设g(x)=eex-x-2,g’(x)=ex+ex-1, 因为g″(x)=ex+ex(1+ex)>0,知g’(x)在(-2,+∞)上为单调递增函数.  相似文献   

9.
题目(2005年,辽宁,理科第22题)函数y=f(x)在区间(O,+∞)内可导,导函数f'(x)是减函数,且f'(x)〉O.设x0∈(0,+∞),y=kx+m是曲线y=f(z)在点(x0,f(x0))处的切线的方程,并设函数g(x)=kz+m。  相似文献   

10.
设函数 f(x)=x (1/x),x∈(0,1),易知函数 f(x)在(0,1)上是下凸函数,由下凸函数的性质有:当 x_1,x_2∈(0,1)时,f(x_1) f(x_2)≥f((x_1 x_2)/2) ①当且仅当 x_1=x_2时取等号.对于下凸函数 f(x)x 1/x,我们给出以  相似文献   

11.
我们知道,高等数学中对三次函数极值是这样来求的: 设f(x)=x~3 px~2 qx r,则f′(x)=3x~2 2px q. 令f′(x)=0. ①当p~2>3q时,解得由成 当x由小到大经过x_1时,f′(x)由正变负,经过x_2时,f′(x)由负变正. ∴y极大=f(x_1),y极小=f(x_2). ②当P~2=3q时,解得x_1=x_2=-p/3,此时f′(x)≥0恒成立,x由小到大经过-p/3时,f′(x)不变号,故-p/3不是极值点。  相似文献   

12.
一、试题呈现设函数f(x)=x2+2ax+a,若函数f(x)与函数f[f(x)]的值域相同,则实数a的取值范围为.第一步:分析f(x)的单调性与最值,易知f(x)在(-∞,-a)上递减,在(-a,+∞)上递增,f(x)min=f(-a)=a-a2,∴f(x)的值域是[a-a2,+∞).第二步:换元分析两函数.设t=f(x),则f[f(x)]=f(t),函数f(t)在t∈(-∞,-a)上递减,在t∈(-a,+∞)上递增,则y=f(t)(t≥a-a2)的值域也是[a-a2,+∞).  相似文献   

13.
正题目对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数),对任给的正数m,存在相应的x0∈D,使得当x∈D且xx0时,总有0f(x)-h(x)m,0h(x)-g(x)m{,则称直线l∶y=kx+b为曲线y=f(x)与y=g(x)的"分渐近线".给出定义域均为D={x|x1}的四组函数如下:  相似文献   

14.
原问题x,y,z∈(0,+∞)且x2+y2+z2=1,求x+y+z-xyz的值域.解读文[1]~[6]给出的各种初等解法,可谓"各显神通".原问题的条件:x,y,z∈(0,+∞)且x2+y2+z2=1,即点(x,y,z)在第一卦限的三维单位球面上,问题为求目标函数:f(x,y,z)=x+y+z-xyz的值域.  相似文献   

15.
正一、定义本质1.导数的定义:f′(x_0)=limΔx→0Δy/Δx=limΔx→0f(x0+Δx)-f(x0)/Δx.2.导数的几何意义:f′(x_0)表示曲线y=f(x)在点(x_0,f(x_0))处的切线的斜率.从图形直观我们易得:导数其实上是函数曲线上两点连线斜率的极端情形;曲线的切线可看作是过切点的割线的极限位置;具备凹、凸性的函数曲线必位于其相应切线的上、下方.二、构建模型  相似文献   

16.
1 可导函数f(x)与其导函数f′(x)的对称性的有关结论 定理 设x0为函数f(x)定义域内的一点,n=f(x0)+f(2m-x0)2,则 (1)函数f(x)关于直线x=m对称的充要条件是f′(x)关于点(m,0)成中心对称;  相似文献   

17.
几乎所有的微积分教科书都论述了下列复合函数的连续性定理: 设函数y=g(z)在z_0点连续,且函数z=f(x)在点x_0连续,z_0=f(x_0),又设复合函数y=g[f(x)]在点x=x_0的某一领域内是有定义的,则复合函数y=g[f(x)]必在x_0处连续。上述定理告诉我们:连续函数的复合函数仍旧是连续函数。现在问:关于复合函数的极限问题,也有类似的结论吗? 为回答这个问题,我们给出如下定理。  相似文献   

18.
题目已知函数f(x)=lnx+kex(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2.本题是2012年山东高考数学理科试题函数问题压轴题,在知识上主要考查函数的定义域、单调性,导数、导数的几何意义,不等式的证明;  相似文献   

19.
<正>解答这类问题的有效策略是将"f(x)g(x)"的外形结构特征与导数运算法则结合起来,即当题设条件中存在或通过变形出现特征式"f′(x)g(x)+f(x)g′(x)"时,可联想、逆用"f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′",先构造可导函数y=f(x)g(x),然后利用该函数的性质巧妙地解决问题根据。例题设函数f(x)、g(x)分别是定义  相似文献   

20.
1问题呈现问题1(2020全国Ⅱ卷文21)已知函数f(x)=2 ln x+1.(1)若f(x)≤2x+c,求c的取值范围;(2)设a>0,讨论函数g(x)=f(x)-f(a)x-a的单调性.问题2(2020天津卷20)已知函数f(x)=x 3+k ln x(k∈R),f′(x)为f(x)的导函数.(1)当k=6时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数g(x)=f(x)-f′(x)+9 x的单调区间和极值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号