首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
This study investigated the development in students' nature of science (NOS) views in the context of an explicit inquiry‐oriented instructional approach. Participants were 18 seventh‐grade students who were taught by a teacher with “appropriate” knowledge about NOS. The intervention spanned about 3 months. During this time, students were engaged in three inquiry‐oriented activities that were followed by reflective discussions of NOS. The study emphasized the tentative, empirical, inferential, and creative aspects of NOS. An open‐ended questionnaire, in conjunction with semi‐structured interviews, was used to assess students' views before, during, and after the intervention. Before instruction, the majority of students held naïve views of the four NOS aspects. During instruction, the students acquired more informed and “intermediary” views of the NOS aspects. By the end of the intervention, the students' views of the NOS aspects had developed further still into informed and “intermediary.” These findings suggest a developmental model in which students' views develop along a continuum during which they pass through intermediary views to reach more informed views. Implications for teaching and learning of NOS are discussed. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 470–496, 2008  相似文献   

2.
This study examined and supported the efforts of Tina, an experienced elementary teacher, in helping her fourth graders internalize informed views of the inferential, tentative, and creative nature of science (NOS). Tina held informed views of, and was motivated to teach about, NOS. The study aimed to answer the following question: What specific supports were needed to enable Tina to make the target NOS elements explicit in her teaching? The lead researcher visited Tina's classroom every week and interacted with her on a continuous basis. Data sources included classroom observations and videotapes, teacher NOS questionnaires and associated interviews, teacher–researcher communications, and teacher and researcher logs. Although Tina's understandings and intentions were necessary to enable her to teach about NOS, they were not sufficient. Tina needed support to translate her NOS views and intentions into pedagogically appropriate instructional activities that would make the target NOS aspects accessible to her students. Socially mediated support was needed at the personal level in terms of helping Tina activate her tacit NOS understandings, and at the professional level in terms of modeling explicit NOS instruction in Tina's own classroom by the lead researcher. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 1025–1049, 2003  相似文献   

3.
This study explored whether early childhood preservice teachers' concerns about teaching nature of science (NOS) and their intellectual levels influenced whether and how they taught NOS at the preschool and primary (K‐3) levels. We used videotaped classroom observations and lesson plans to determine the science instructional practices at the preschool and primary levels, and to track whether and how preservice teachers emphasized NOS. We used the Stages of Concern Questionnaire (SOCQ) pre‐ and postinternship to determine concerns about NOS instruction, and the Learning Context Questionnaire (LCQ) to determine intellectual levels. We found that neither concerns about teaching NOS nor intellectual level were related to whether and how the preservice teachers emphasized NOS; however, we found that all preservice early childhood teachers began their internships with NOS concern profiles of “worried.” Two preservice teachers' NOS concerns profiles changed as a result of their internships; one to “cooperator” and one to “cooperator/improver.” These two preservice teachers had cooperating teachers who were aware of NOS and implemented it in their own science instruction. The main factors that hindered or facilitated teaching NOS for these preservice teachers were the influence of the cooperating teacher and the use of the science curriculum. The preservice teacher with the cooperating teacher who understood and emphasized NOS herself and showed her how to modify the curriculum to include NOS, was able to explicitly teach NOS to her students. Those in classrooms whose cooperating teachers did not provide support for NOS instruction were unable to emphasize NOS. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:213–233, 2010  相似文献   

4.
This study (a) assessed the influence of three history of science (HOS) courses on college students' and preservice science teachers' conceptions of nature of science (NOS), (b) examined whether participants who entered the investigated courses with a conceptual framework consistent with contemporary NOS views achieved more elaborate NOS understandings, and (c) explored the aspects of the participant HOS courses that rendered them more “effective” in influencing students' views. Participants were 166 undergraduate and graduate students and 15 preservice secondary science teachers. An open‐ended questionnaire in conjunction with individual interviews, was used to assess participants' pre‐ and postinstruction NOS views. Almost all participants held inadequate views of several NOS aspects at the outset of the study. Very few and limited changes in participants' views were evident at the conclusion of the courses. Change was evident in the views of relatively more participants, especially preservice science teachers, who entered the HOS courses with frameworks that were somewhat consistent with current NOS views. Moreover, explicitly addressing certain NOS aspects rendered the HOS courses relatively more effective in enhancing participants' NOS views. The results of this study do not lend empirical support to the intuitively appealing assumption held by many science educators that coursework in HOS will necessarily enhance students' and preservice science teachers' NOS views. However, explicitly addressing specific NOS aspects might enhance the effectiveness of HOS courses in this regard. Moreover, the study suggests that exposing preservice science teachers to explicit NOS instruction in science methods courses prior to their enrollment in HOS courses might increase the likelihood that their NOS views will be changed or enriched as a result of their experiences with HOS. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 1057–1095, 2000  相似文献   

5.
This study assessed the influence of a 3‐year professional development program on elementary teachers' views of nature of science (NOS), instructional practice to promote students' appropriate NOS views, and the influence of participants' instruction on elementary student NOS views. Using the VNOS‐B and associated interviews the researchers tracked the changes in NOS views of teacher participants throughout the professional development program. The teachers participated in explicit–reflective activities, embedded in a program that emphasized scientific inquiry and inquiry‐based instruction, to help them improve their own elementary students' views of NOS. Elementary students were interviewed using the VNOS‐D to track changes in their NOS views, using classroom observations to note teacher influences on student ideas. Analysis of the VNOS‐B and VNOS‐D showed that teachers and most grades of elementary students showed positive changes in their views of NOS. The teachers also improved in their science pedagogy, as evidenced by analysis of their teaching. Implications for teacher professional development programs are made. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 653–680, 2007  相似文献   

6.
This research investigated the effect of reflective discussions following inquiry‐based laboratory activities on students' views of the tentative, empirical, subjective, and social aspects of nature of science (NOS). Thirty‐eight grade six students from a Lebanese school participated in the study. The study used a pretest–posttest control‐group design and focused on collecting mainly qualitative data. During each laboratory session, students worked in groups of two. Later, experimental group students answered open‐ended questions about NOS then engaged in reflective discussions about NOS. Control group students answered open‐ended questions about the content of the laboratory activities then participated in discussions of results of these activities. Data sources included an open‐ended questionnaire used as pre‐ and posttest, answers to the open‐ended questions that experimental group students answered individually during every session, transcribed videotapes of the reflective discussions of the experimental group, and semi‐structured interviews. Results indicated that explicit and reflective discussions following inquiry‐based laboratory activities enhanced students' views of the target NOS aspects more than implicit inquiry‐based instruction. Moreover, implicit inquiry‐based instruction did not substantially enhance the students' target NOS views. This study also identified five major challenges that students faced in their attempts to change their NOS views. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1229–1252, 2010  相似文献   

7.
This study investigated the influence of two different explicit instructional approaches in promoting more informed understandings of nature of science (NOS) among students. Participants, a total of 42 students, comprised two groups in two intact sections of ninth grade. Participants in the two groups were taught environmental science by their regular classroom teacher, with the difference being the context in which NOS was explicitly taught. For the “integrated” group, NOS instruction was related to the science content about global warming. For the “nonintegrated” group, NOS was taught through a set of activities that specifically addressed NOS issues and were dispersed across the content about global warming. The treatment for both groups spanned 6 weeks and addressed a unit about global warming and NOS. An open‐ended questionnaire, in conjunction with semistructured interviews, was used to assess students' views before and after instruction. Results showed improvements in participants' views of NOS regardless of whether NOS was integrated within the regular content about global warming. Comparison of differences between the two groups showed “slightly” greater improvement in the informed views of the integrated group participants. On the other hand, there was greater improvement in the transitional views of the nonintegrated group participants. Therefore, the overall results did not provide any conclusive evidence in favor of one approach over the other. Implications on the teaching and learning of NOS are discussed. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 395–418, 2006  相似文献   

8.
This teacher development study closely examined a teacher's practice for the purpose of understanding how she selected and implemented instructional materials, and correspondingly how these processes changed as she developed her problem‐based practice throughout a school year. Data sources included over 20 hours of planning and analysis meetings with the teacher and 27 video‐taped lessons with discussions before and after each lesson. Through qualitative analysis we examined the data for: students' cognitive demand for curricular materials the teacher selected and implemented; teacher's beliefs and practices for students' engagement in mathematical thinking; and teacher's and students' communication about mathematics during instruction. We found that the teacher shifted her views and use of instructional materials as she changed her practice towards more problem‐based approaches. The teacher moved from closely following her traditional, district‐adopted textbook to selecting problem‐based tasks from outside resources to build a curriculum. Simultaneously, she changed her practice to focus more on students' engagement in mathematical thinking and their communication about mathematics as part of learning. During this shift in practice, the teacher began to reify instructional materials, viewing them as instruments of her practice to meet students' needs. The process of shifting her views was gradual over the school year and involved substantial analysis and reflection on practice from the teacher. Implications include that teachers and teacher educators may need to devote more attention and support for teachers to use instructional materials to support instruction, rather than materials to prescribe instruction. This use of instructional materials may be an important part of transforming practice overall.  相似文献   

9.
This study investigated the effect of including explicit nature of science (NOS) content in read-alouds of elementary science trade books on the teaching and learning of NOS. We focused on three aspects of NOS: the creative, the empirical, and the inferential NOS. The trade books were read aloud by teachers in three hierarchical levels: Level I served as a control and consisted of a trade book that remained unmodified, Level II consisted of a trade book that had been modified to include explicit references to NOS, and Level III consisted of a modified trade book accompanied by educative curriculum materials that were aimed at improving the teachers' views of NOS as well as supporting teaching about NOS. We used the Views of Nature of Science Questionnaire-form CE (VNOS-CE) preintervention and postintervention to determine changes in teachers' views of NOS and interviews preintervention and postintervention to determine changes in students' views. Audio recordings of read-alouds were used to determine changes in teaching practice, including the frequency and the quality (i.e., naïve or informed) of the NOS references in the discussions. Interviews were used to determine teachers' perceptions of the modified trade books and educative curriculum materials. We found that both teachers and students developed more informed views of the targeted NOS aspects after the intervention and that teachers addressed NOS more often, and in a more informed manner, when they had trade books that explicitly supported NOS instruction and educative curriculum materials that supported their learning about NOS. Furthermore, they perceived the intervention materials favorably. Teachers' views and practices were able to change in tandem because of the intervention materials that supported explicit NOS instruction. We highlight the need for more widespread development of similar educative curriculum materials.  相似文献   

10.
Preparing students to achieve the lofty goal of functional scientific literacy entails addressing the normative and non‐normative facets of socioscientific issues (SSI) such as scientific processes, the nature of science (NOS) and diverse sociocultural perspectives. SSI instructional approaches have demonstrated some efficacy for promoting students' NOS views, compassion for others, and decision making. However, extant investigations appear to neglect fully engaging students through authentic SSI in several ways. These include: (i) providing SSI instruction through classroom approaches that are divorced from students' lived experiences; (ii) demonstrating a contextual misalignment between SSI and NOS (particularly evident in NOS assessments); and (iii) framing decision making and position taking analogously—with the latter being an unreliable indicator of how people truly act. The significance of the convergent parallel mixed‐methods investigation reported here is how it responds to these shortcomings through exploring how place‐based SSI instruction focused on the contentious environmental issue of wolf reintroduction in the Greater Yellowstone Area impacted sixty secondary students' NOS views, compassion toward those impacted by contentious environmental issues, and pro‐environmental intent. Moreover, this investigation explores how those perspectives associate with the students' pro‐environmental action of donating to a Yellowstone environmental organization. Results demonstrate that the students' NOS views became significantly more accurate and contextualized, with moderate to large effect, through the place‐based SSI instruction. Through that instruction, the students also exhibited significant gains in their compassion for nature and people impacted by contentious environmental issues and pro‐environmental intent. Further analyses showed that donating students developed and demonstrated significantly more robust and contextualized NOS views, compassion for people and nature impacted by contentious environmental issues, and pro‐environmental intent than their nondonating counterparts. Pedagogical implications include how place‐based learning in authentic settings could better prepare students to understand NOS, become socioculturally aware, and engage SSI across a variety of contexts.  相似文献   

11.
This study investigated the influence of an explicit and reflective inquiry‐oriented compared with an implicit inquiry‐oriented instructional approach on sixth graders' understandings of nature of science (NOS). The study emphasized the tentative, empirical, inferential, and imaginative and creative NOS. Participants were 62 sixth‐grade students in two intact groups. The intervention or explicit group was engaged in inquiry activities followed by reflective discussions of the target NOS aspects. The comparison or implicit group was engaged in the same inquiry activities. However, these latter activities included no explicit references to or discussion of any NOS aspects. Engagement time was balanced for both groups. An open‐ended questionnaire in conjunction with semistructured interviews was used to assess participants' NOS views before and at the conclusion of the intervention, which spanned 2.5 months. Before the intervention, the majority of participants in both groups held naive views of the target NOS aspects. The views of the implicit group participants were not different at the conclusion of the study. By comparison, substantially more participants in the explicit group articulated more informed views of one or more of the target NOS aspects. Thus, an explicit and reflective inquiry‐oriented approach was more effective than an implicit inquiry‐oriented approach in promoting participants' NOS conceptions. These results do not support the intuitively appealing assumption that students would automatically learn about NOS through engagement in science‐based inquiry activities. Developing informed conceptions of NOS is a cognitive instructional outcome that requires an explicit and reflective instructional approach. © 2002 Wiley Periodicals, Inc. J Res Sci Teach 39: 551–578, 2002  相似文献   

12.
Understanding nature of science (NOS) is considered critical to the development of students’ scientific literacy. However, various studies have shown that a large number of elementary and secondary science teachers do not possess an adequate understanding of NOS. This study investigated how elementary teachers’ understanding of NOS was impacted through a 1-year professional development program in Chile that included NOS instruction as a theme throughout two types of mini-courses in the program. Twelve teachers attended a 1-year development program focused on improving teacher content knowledge and included the instruction of NOS embedded in two self-contained NOS mini-courses (36 h) and two lessons (3 h each) within five science content mini-courses (30 h). The Views of NOS (version D+) questionnaire and interviews were used to assess teachers’ understanding of NOS at the beginning (January) and end of the program (December). Elementary teachers’ understanding of the creative, inferential, and tentative aspect of NOS showed improvement. According to the teachers’ perceptions, the most significant activities for improving their NOS understanding were decontextualized activities in both types of mini-courses (self-contained NOS and science content mini-courses). The implications for professional development programs are also discussed.  相似文献   

13.
14.
Science includes more than just concepts and facts, but also encompasses scientific ways of thinking and reasoning. Students' cultural and linguistic backgrounds influence the knowledge they bring to the classroom, which impacts their degree of comfort with scientific practices. Consequently, the goal of this study was to investigate 5th grade students' views of explanation, argument, and evidence across three contexts—what scientists do, what happens in science classrooms, and what happens in everyday life. The study also focused on how students' abilities to engage in one practice, argumentation, changed over the school year. Multiple data sources were analyzed: pre‐ and post‐student interviews, videotapes of classroom instruction, and student writing. The results from the beginning of the school year suggest that students' views of explanation, argument, and evidence, varied across the three contexts with students most likely to respond “I don't know” when talking about their science classroom. Students had resources to draw from both in their everyday knowledge and knowledge of scientists, but were unclear how to use those resources in their science classroom. Students' understandings of explanation, argument, and evidence for scientists and for science class changed over the course of the school year, while their everyday meanings remained more constant. This suggests that instruction can support students in developing stronger understanding of these scientific practices, while still maintaining distinct understandings for their everyday lives. Finally, the students wrote stronger scientific arguments by the end of the school year in terms of the structure of an argument, though the accuracy, appropriateness, and sufficiency of the arguments varied depending on the specific learning or assessment task. This indicates that elementary students are able to write scientific arguments, yet they need support to apply this practice to new and more complex contexts and content areas. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 793–823, 2011  相似文献   

15.
This study assessed the influence of a reflective, explicit, activity‐based approach to nature of science (NOS) instruction undertaken in the context of an elementary science methods course on preservice teachers' views of some aspects of NOS. These aspects included the empirical, tentative, subjective (theory‐laden), imaginative and creative, and social and cultural NOS. Two additional aspects were the distinction between observation and inference, and the functions of and relationship between scientific theories and laws. Participants were 25 undergraduate and 25 graduate preservice elementary teachers enrolled in two sections of the investigated course. An open‐ended NOS questionnaire coupled with individual interviews was used to assess participants' NOS views before and at the conclusion of the course. The majority of participants held naive views of the target NOS aspects at the beginning of the study. During the first week of class, participants were engaged in specially designed activities that were coupled with explicit NOS instruction. Throughout the remainder of the course, participants were provided with structured opportunities to reflect on their views of the target NOS aspects. Postinstruction assessments indicated that participants made substantial gains in their views of some of the target NOS aspects. Less substantial gains were evident in the case of the subjective, and social and cultural NOS. The results of the present study support the effectiveness of explicit, reflective NOS instruction. Such instruction, nonetheless, might be rendered more effective when integrated within a conceptual change approach. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 295–317, 2000.  相似文献   

16.
This study examined the impact of a professional development intervention aimed at helping elementary teachers incorporate elements of students' home language and culture into science instruction. The intervention consisted of instructional units and materials and teacher workshops. The research involved 43 third‐ and fourth‐grade teachers at six elementary schools in a large urban school district. These teachers participated in the intervention for 2 consecutive years. The study was conducted using both quantitative and qualitative methods based on focus group interviews, a questionnaire, and classroom observations. The results indicate that as teachers began their participation in the intervention, they rarely incorporated students' home language or culture into science instruction. During the 2‐year period of the intervention, teachers' beliefs and practices remained relatively stable and did not show significant change. Possible explanations for the limited effectiveness of the intervention are addressed, and implications for professional development efforts are discussed. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 1269–1291, 2007  相似文献   

17.
ABSTRACT

Graduate students regularly teach undergraduate STEM courses and can positively impact students’ understanding of science. Yet little research examines graduate students’ knowledge about nature of science (NOS) or instructional strategies for teaching graduate students about NOS. This exploratory study sought to understand how a 1-credit Teaching in Higher Education course that utilised an explicit, reflective, and mixed-context approach to NOS instruction impacted STEM graduate students’ NOS conceptions and teaching intentions. Participants included 13 graduate students. Data sources included the Views of Nature of Science (VNOS-Form C) questionnaire administered pre- and post-instruction, semi-structured interviews with a subset of participants, and a NOS-related course project. Prior to instruction participants held many alternative NOS conceptions. Post-instruction, participants’ NOS conceptions improved substantially, particularly in their understandings of theories and laws and the tentative nature of scientific knowledge. All 12 participants planning to teach NOS intended to use explicit instructional approaches. A majority of participants also integrated novel ideas to their intended NOS instruction. These results suggest that a teaching methods course for graduate students with embedded NOS instruction can address alternative NOS conceptions and facilitate intended use of effective NOS instruction. Future research understanding graduate students' NOS understandings and actual NOS instruction is warranted.  相似文献   

18.
Past studies investigating university level students' views of nature of science (NOS) were relatively few and most of them were conducted in Western countries. This paper focuses upon comparing the quantitative patterns in Western (US Caucasian and African-American) and non-Western (Taiwanese) students' views of NOS (VNOS) by adopting a survey instrument. This analysis combined with qualitative data begin to uncover details of potential cultural differences in patterns specifically in the US educational context by comparing Caucasian and African-American student responses to a question from a commonly used assessment of VNOS. Results show different patterns of views along the four dimensions of NOS (social negotiation, invented/creative NOS, cultural impacts, and changing/tentative feature of science) according to student major, student gender, and student ethnicity. These differences and similarities have the potential to impact undergraduate education and underrepresentation of cultural minorities in science careers and call for further research into NOS views in the context of diverse student groups.  相似文献   

19.
There exists a general consensus in the science education literature around the goal of enhancing learners' views of nature of science (NOS). An extensive body of research in the field has highlighted the effectiveness of explicit NOS instructional approaches in improving learners' NOS views. Emerging research has suggested that engaging learners in argumentation may aid in the development of their NOS views, although this claim lacks empirical support. This study assessed the influence of a science content course incorporating explicit NOS and argumentation instruction on five preservice primary teachers' views of NOS using multiple sources of data including questionnaires and surveys, interviews, audio‐ and video‐taped class sessions, and written artifacts. Results indicated that the science content course was effective in enabling four of the five participants' views of NOS to be improved. A critical analysis of the effectiveness of the various course components led to the identification of three factors that mediated the development of participants' NOS views during the intervention: (a) contextual factors (context of argumentation, mode of argumentation), (b) task‐specific factors (argumentation scaffolds, epistemological probes, consideration of alternative data and explanations), and (c) personal factors (perceived previous knowledge about NOS, appreciation of the importance and utility value of NOS, durability and persistence of pre‐existing beliefs). The results of this study provide evidence to support the inclusion of explicit NOS and argumentation instruction as a context for learning about NOS, and promote consideration of this instructional approach in future studies which aim to enhance learners' views of NOS. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1137–1164, 2010  相似文献   

20.
This study examined the geologic and evolutionary subject matter and views of inquiry and nature of science (NOS) of a group of 5th–9th grade teachers, and a comparison group, before and after participating in an inquiry-based professional development (PD) experience. Project teachers participated in an intensive, week-long, resident institute where they learned about geology, evolutionary concepts, NOS, and inquiry while engaging in an authentic scientific investigation. They were also given support in how to teach these topics using an inquiry-based approach. Analyses of data indicate that project teachers showed greater gains in subject matter than comparison teachers and the relative change was significantly different statistically. Furthermore, most project teachers demonstrated a shift from less informed to more informed views of inquiry and NOS and the relative change between participant and comparison teachers was significantly different statistically. These gains are promising because they suggest that short-term and intensive PD can support teachers in enhancing their knowledge and views. Moreover, analysis of post-programme questionnaires and interviews indicated that supporting teachers in reflecting on the relationship between their former classroom teaching practice, and new knowledge acquired during PD, may be an important link in enhancing teacher knowledge and supporting change in practice. This suggests that enhanced knowledge and views may not be the only factor contributing to changing one's practice. The study points to the importance of reflection in promoting teacher change. Results from this study add insights to supporting teachers in enacting inquiry-based instruction and teaching about NOS in their classrooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号