首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This case study focused on a preservice teachers' (Morgan) efforts to explicitly emphasize nature of science (NOS) elements in her first‐grade internship classroom. The study assessed the change in first grade students' views of the inferential, tentative, and creative NOS as a result of the explicit instruction. Morgan held appropriate views of NOS, had the intention and motivation to teach NOS, and had a supporting experience explicitly emphasizing NOS embedded in physics content to peer college students. Data sources included weekly classroom observations of explicit NOS science lessons taught by Morgan, interview of Morgan to determine that her views of NOS were informed and that she would have the NOS content knowledge to teach in line with recommended reforms, and interviews of the first‐grade students pre‐ and postinstruction to determine the influence of Morgan's instruction on their views of observation and inference, the tentative NOS, and the creative and imaginative NOS. Data were analyzed to determine (a) the approaches Morgan used to emphasize NOS in her instruction, and (b) students' views of NOS pre‐ and postinstruction to track change in their views. It was found that Morgan was able to explicitly emphasize NOS using three teacher‐designed methods, and that the influence on student views of the inferential, tentative, and creative NOS was positive. Implications for teacher development are provided. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 377–394, 2006  相似文献   

2.
This article is situated within an experience of conflict for Tina, a social work student, who is caught between her beliefs about the virtues of social work practice, and her disillusioning encounter with the school's administration. In this paper, we interpret Tina's experience of conflict by drawing on the central concepts of liminality and natality, and how she moves through disillusionment to illumination, thereby generating new self-understandings and meanings of social work practice. We conclude with the pedagogical implications for students, and educators, and that as messy and complex as the liminal is, it is also vital to the creation of new understandings and regeneration of meaning in professional education.  相似文献   

3.
4.
This study investigated the influence of two different explicit instructional approaches in promoting more informed understandings of nature of science (NOS) among students. Participants, a total of 42 students, comprised two groups in two intact sections of ninth grade. Participants in the two groups were taught environmental science by their regular classroom teacher, with the difference being the context in which NOS was explicitly taught. For the “integrated” group, NOS instruction was related to the science content about global warming. For the “nonintegrated” group, NOS was taught through a set of activities that specifically addressed NOS issues and were dispersed across the content about global warming. The treatment for both groups spanned 6 weeks and addressed a unit about global warming and NOS. An open‐ended questionnaire, in conjunction with semistructured interviews, was used to assess students' views before and after instruction. Results showed improvements in participants' views of NOS regardless of whether NOS was integrated within the regular content about global warming. Comparison of differences between the two groups showed “slightly” greater improvement in the informed views of the integrated group participants. On the other hand, there was greater improvement in the transitional views of the nonintegrated group participants. Therefore, the overall results did not provide any conclusive evidence in favor of one approach over the other. Implications on the teaching and learning of NOS are discussed. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 395–418, 2006  相似文献   

5.
This article explores how reflective practice may be facilitated among pre-service teachers preparing to teach in culturally diverse classrooms. The significance of the mentor teacher’s ability to reveal her/himself as a reflective practitioner in order to promote student reflection is well documented. The article specifically addresses one teacher educator’s approach to offering mentor support with a focus on reflective practices related to cultural diversity. She explores how her ethnographic doctoral study on the classroom participation of adult South Sudanese students in different Australian learning environments has informed her own practice as a teacher, and ways in which her teaching philosophy and values were influenced by the sustained reflection needed to complete the study. By making explicit an aspect of her reflective practice, she aims to add to the growing body of literature on how to engage pre-service teachers meaningfully in reflection on their own classroom practice, especially in relation to teaching to diversity.  相似文献   

6.
ABSTRACT

Graduate students regularly teach undergraduate STEM courses and can positively impact students’ understanding of science. Yet little research examines graduate students’ knowledge about nature of science (NOS) or instructional strategies for teaching graduate students about NOS. This exploratory study sought to understand how a 1-credit Teaching in Higher Education course that utilised an explicit, reflective, and mixed-context approach to NOS instruction impacted STEM graduate students’ NOS conceptions and teaching intentions. Participants included 13 graduate students. Data sources included the Views of Nature of Science (VNOS-Form C) questionnaire administered pre- and post-instruction, semi-structured interviews with a subset of participants, and a NOS-related course project. Prior to instruction participants held many alternative NOS conceptions. Post-instruction, participants’ NOS conceptions improved substantially, particularly in their understandings of theories and laws and the tentative nature of scientific knowledge. All 12 participants planning to teach NOS intended to use explicit instructional approaches. A majority of participants also integrated novel ideas to their intended NOS instruction. These results suggest that a teaching methods course for graduate students with embedded NOS instruction can address alternative NOS conceptions and facilitate intended use of effective NOS instruction. Future research understanding graduate students' NOS understandings and actual NOS instruction is warranted.  相似文献   

7.
Science educators have the common goal of helping students develop scientific literacy, including understanding of the nature of science (NOS). University faculties are challenged with the need to develop informed NOS views in several major student subpopulations, including science majors and nonscience majors. Research into NOS views of undergraduates, particularly science majors, has been limited. In this study, NOS views of undergraduates in introductory environmental science and upper-level animal behavior courses were measured using Likert items and open-ended prompts. Analysis revealed similarities in students'' views between the two courses; both populations held a mix of naïve, transitional, and moderately informed views. Comparison of pre- and postcourse mean scores revealed significant changes in NOS views only in select aspects of NOS. Student scores on sections addressing six aspects of NOS were significantly different in most cases, showing notably uninformed views of the distinctions between scientific theories and laws. Evidence-based insight into student NOS views can aid in reforming undergraduate science courses and will add to faculty and researcher understanding of the impressions of science held by undergraduates, helping educators improve scientific literacy in future scientists and diverse college graduates.  相似文献   

8.
Teachers need an understanding of the nature of science (NOS) to enable them to incorporate NOS into their teaching of science. The current study examines the usefulness of a strategy for challenging or changing teachers’ understandings of NOS. The teachers who participated in this study were 10 initial teacher education chemistry students and six experienced teachers from secondary and primary schools who were introduced to an explicit and reflective activity, a dramatic reading about a historical scientific development. Concept maps were used before and after the activity to assess teachers’ knowledge of NOS. The participants also took part in a focus group interview to establish whether they perceived the activity as useful in developing their own understanding of NOS. Initial analysis led us to ask another group, comprising seven initial teacher education chemistry students, to take part in a modified study. These participants not only completed the same tasks as the previous participants but also completed a written reflection commenting on whether the activity and focus group discussion enhanced their understanding of NOS. Both Lederman et al.’s (Journal of Research in Science Teaching, 39(6), 497–521, 2002) concepts of NOS and notions of “naive” and “informed” understandings of NOS and Hay’s (Studies in Higher Education, 32(1), 39–57, 2007) notions of “surface” and “deep” learning were used as frameworks to examine the participants’ specific understandings of NOS and the depth of their learning. The ways in which participants’ understandings of NOS were broadened or changed by taking part in the dramatic reading are presented. The impact of the data-gathering tools on the participants’ professional learning is also discussed.  相似文献   

9.
Embodiment as a compelling way to rethink the nature of teaching and learning asks participants to see fundamentally what is at stake within teaching/learning situations, encountering ourselves and our relations to others/otherness. Drawing predominantly on the thinking of John Dewey and Maurice Merleau‐Ponty the body's role within teaching and learning is enfleshed through the concrete experiences of one middle‐school science teacher attempting to teach for greater student inquiry. Personal, embodied understandings of the lived terms of inquiry enable the science teacher to seek out the lived terms of inquiry in her classroom alongside students. Theories are taken up as working notions for the teacher to examine as philosophical/theoretical/pragmatic processes to be worked with, and concomitantly, working as dynamic practice at the core of the teacher's thinking and experiences. The theory/practice conjuncture of inquiry is thus enfleshed, gaining embodied understandings. Embodiment as the medium enhancing comprehension is evidenced as holding worthy implications for teacher education. Teacher education must fall into trust with the body's role in teaching and learning.  相似文献   

10.
This study investigated the influence of an explicit and reflective inquiry‐oriented compared with an implicit inquiry‐oriented instructional approach on sixth graders' understandings of nature of science (NOS). The study emphasized the tentative, empirical, inferential, and imaginative and creative NOS. Participants were 62 sixth‐grade students in two intact groups. The intervention or explicit group was engaged in inquiry activities followed by reflective discussions of the target NOS aspects. The comparison or implicit group was engaged in the same inquiry activities. However, these latter activities included no explicit references to or discussion of any NOS aspects. Engagement time was balanced for both groups. An open‐ended questionnaire in conjunction with semistructured interviews was used to assess participants' NOS views before and at the conclusion of the intervention, which spanned 2.5 months. Before the intervention, the majority of participants in both groups held naive views of the target NOS aspects. The views of the implicit group participants were not different at the conclusion of the study. By comparison, substantially more participants in the explicit group articulated more informed views of one or more of the target NOS aspects. Thus, an explicit and reflective inquiry‐oriented approach was more effective than an implicit inquiry‐oriented approach in promoting participants' NOS conceptions. These results do not support the intuitively appealing assumption that students would automatically learn about NOS through engagement in science‐based inquiry activities. Developing informed conceptions of NOS is a cognitive instructional outcome that requires an explicit and reflective instructional approach. © 2002 Wiley Periodicals, Inc. J Res Sci Teach 39: 551–578, 2002  相似文献   

11.
This study explores the development of professional identity as a teacher of nature of science (NOS). Our research question was ‘How can a teacher develop a professional identity as an elementary teacher of NOS?' Through a researcher log, videotaped lessons, and collection of student work, we were able to track efforts in teaching NOS as part of regular classroom practice. A team of four researchers interpreted the data through the Beijaard et al. professional identity framework and found that it was not as simple and straightforward to teach NOS as we predicted. Development of professional identity as a teacher of NOS was influenced by contextual factors such as students, administration, and time, as well as personal struggles that were fraught with emotion. Development took place through an interpretation and reinterpretation of self through external factors and others' perceptions, as well as the influence of sub-identities.  相似文献   

12.
This study examined the geologic and evolutionary subject matter and views of inquiry and nature of science (NOS) of a group of 5th–9th grade teachers, and a comparison group, before and after participating in an inquiry-based professional development (PD) experience. Project teachers participated in an intensive, week-long, resident institute where they learned about geology, evolutionary concepts, NOS, and inquiry while engaging in an authentic scientific investigation. They were also given support in how to teach these topics using an inquiry-based approach. Analyses of data indicate that project teachers showed greater gains in subject matter than comparison teachers and the relative change was significantly different statistically. Furthermore, most project teachers demonstrated a shift from less informed to more informed views of inquiry and NOS and the relative change between participant and comparison teachers was significantly different statistically. These gains are promising because they suggest that short-term and intensive PD can support teachers in enhancing their knowledge and views. Moreover, analysis of post-programme questionnaires and interviews indicated that supporting teachers in reflecting on the relationship between their former classroom teaching practice, and new knowledge acquired during PD, may be an important link in enhancing teacher knowledge and supporting change in practice. This suggests that enhanced knowledge and views may not be the only factor contributing to changing one's practice. The study points to the importance of reflection in promoting teacher change. Results from this study add insights to supporting teachers in enacting inquiry-based instruction and teaching about NOS in their classrooms.  相似文献   

13.
This study assessed the influence of a 3‐year professional development program on elementary teachers' views of nature of science (NOS), instructional practice to promote students' appropriate NOS views, and the influence of participants' instruction on elementary student NOS views. Using the VNOS‐B and associated interviews the researchers tracked the changes in NOS views of teacher participants throughout the professional development program. The teachers participated in explicit–reflective activities, embedded in a program that emphasized scientific inquiry and inquiry‐based instruction, to help them improve their own elementary students' views of NOS. Elementary students were interviewed using the VNOS‐D to track changes in their NOS views, using classroom observations to note teacher influences on student ideas. Analysis of the VNOS‐B and VNOS‐D showed that teachers and most grades of elementary students showed positive changes in their views of NOS. The teachers also improved in their science pedagogy, as evidenced by analysis of their teaching. Implications for teacher professional development programs are made. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 653–680, 2007  相似文献   

14.
This study (a) assessed the influence of an integrated nature of science (NOS) instructional intervention on inservice secondary science teachers' understandings, retention of those understandings, and their NOS instructional planning and practices; and (b) examined factors that mediated the translation of teachers' NOS understandings into practice. Nineteen teachers participated in an intensive, 6-week NOS course, which concluded with teachers developing plans to address NOS in their classrooms. Next, 6 participants were observed as they implemented their instructional plans. Data sources included pretest, posttest, and delayed-test NOS assessments, classroom observations, and several teacher-generated artifacts. The NOS course was effective in helping teachers develop informed NOS conceptions and retain those understandings 5 months after its conclusion. Teachers met with challenges and successes as they attempted to address NOS instructionally. The translation of NOS conceptions into practice was primarily mediated by the very nature of teachers' newly acquired NOS understandings, which were situated within the science contents, contexts, and experiences in which they were developed (i.e. the NOS course); thus, limiting participants' abilities to transfer their understandings into novel contexts and contents. The results helped build a model of the sources of science teachers' pedagogical content knowledge for teaching about NOS in content-rich contexts.  相似文献   

15.
Context one: the computer classroom It is period three on Tuesday. 8H is in the computer room. Wendy is tapping at her keyboard energetically, stopping every few minutes to read over the evolving text on the screen. The writing task is a letter to the members of the school's Student Representative Council (SRC) to persuade them that Our school is the perfect school. She is engrossed in her writing, oblivious to any movement or talk in the classroom. At another table, Susan stands behind Samantha who is peering at her monitor. Susan points to a sentence on the screen and suggests that Samantha move it to the beginning of the paragraph where, she argues, it might be more effective. Samantha uses a block command and inserts the sentence in its new position. They confer, then decide that it worked better where it was, so Samantha moves it back to its original location. Mary and Jill have been working at adjacent computers. They turn away from their keyboards and screens, move their chairs closer together and talk about the possible directions Mary's letter could take. Lauren has just printed her letter to the SRC. As she tears off the perforated edges, she approaches Tina and asks her to read it. They stand together, resting against a table, their eyes moving down the printed page. Tina suggests to Lauren that the tone is too formal. Lauren agrees and asks Tina's advice about how to loosen it up. Jacqui, the teacher, sits beside Anabelle who is reading her piece out loud. They are concentrating on the cohesiveness of the letter. Jacqui suggests where a conjunction would be useful. All the students in the classroom are engaged in writing, some independently, some collaboratively. Context two: the pen classroom English, Friday morning. The students of 8K are working on their letters to the members of the SRC. Jacqui, the teacher, sits next to Petula, but their discussion of the sequencing of the text is regularly broken. For the third time since the lesson began, Jacqui stands up and asks the girls to stop talking and get on with their writing. The students sit four to a table: they whisper to each other; the giggles and nudges indicate that they're not discussing writing. Jill has decided to move to an unoccupied table: as she gathers her books, Jill explains to Peta that she hopes she'll be able to concentrate better away from the interruptions of her friends. Abigail looks at her watch and exclaims that the bell is about to go and she has written only one paragraph. Jodie and Penny also announce that they are nowhere near finishing their letters. Jodie remarks that it's boring writing in class. Penny agrees and comments: “It's also too hard!”  相似文献   

16.
The term professional vision points to the many nuanced ways professionals see. This paper traces the development of a professional vision of a researcher and a teacher looking at classroom practices. The researcher’s interest was to capture and study notable aspects of the teacher’s practice. Through a coding scheme, disparate classroom events were organized and analyzed to yield a researcher’s professional vision of the teacher’s practices. For the teacher, through reviewing the video records of his own classroom practices, his professional vision provided a basis for him to reflect and develop professionally. Leveraging on the work of the researcher, he initiated and transformed his own practices. Their collaboration yielded a mutually informed development of professional vision of classroom practices. In juxtaposing the two developments, the researcher and the teacher’s views can be contrasted, their distinctive interests highlighted and common grounds explored. Some implications for developing professional vision are drawn, and it is in the common grounds of the teacher’s professional development and seeing with a goal of enhancing of student learning that hold some promise of a mutual interest in developing a professional vision of classroom practices.  相似文献   

17.
This study explored the development of a community of learners through a professional development program to improve teachers' views of nature of science (NOS) and teaching practice. The Views of Nature of Science questionnaire and interviews were used to assess teachers' conceptions of NOS three times over the course of the study. Notes and videotapes taken during workshops and classroom observations were used to track influence of the community of learners on classroom practice. The community of practice (CoP) was fostered through an intensive summer workshop, monthly school site workshops, and classroom support to aid teachers in incorporating new techniques and reflecting upon their learning and practice. We found that teachers became aware of their changes in views about NOS once they struggled with the concepts in their own teaching and discussed their struggles within the professional development community. The CoP on its own was not sufficient to change teacher's practice or knowledge, but it created a well‐supported environment that facilitated teacher change when paired with NOS modeling and explicit reflection. Cases of three teachers are used to illustrate changes in views and teaching practice common to the teachers in this study. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 46: 1090–1113, 2009  相似文献   

18.
This study investigated the development in students' nature of science (NOS) views in the context of an explicit inquiry‐oriented instructional approach. Participants were 18 seventh‐grade students who were taught by a teacher with “appropriate” knowledge about NOS. The intervention spanned about 3 months. During this time, students were engaged in three inquiry‐oriented activities that were followed by reflective discussions of NOS. The study emphasized the tentative, empirical, inferential, and creative aspects of NOS. An open‐ended questionnaire, in conjunction with semi‐structured interviews, was used to assess students' views before, during, and after the intervention. Before instruction, the majority of students held naïve views of the four NOS aspects. During instruction, the students acquired more informed and “intermediary” views of the NOS aspects. By the end of the intervention, the students' views of the NOS aspects had developed further still into informed and “intermediary.” These findings suggest a developmental model in which students' views develop along a continuum during which they pass through intermediary views to reach more informed views. Implications for teaching and learning of NOS are discussed. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 470–496, 2008  相似文献   

19.
Learning to teach science as inquiry in the rough and tumble of practice   总被引:2,自引:0,他引:2  
This study examined the knowledge, beliefs and efforts of five prospective teachers to enact teaching science as inquiry, over the course of a one‐year high school fieldwork experience. Data sources included interviews, field notes, and artifacts, as these prospective teachers engaged in learning how to teach science. Research questions included 1) What were these prospective teachers' beliefs of teaching science? 2) To what extent did these prospective teachers articulate understandings of teaching science as inquiry? 3) In what ways, if any, did these prospective teachers endeavor to teach science as inquiry in their classrooms? 4) In what ways did the mentor teachers' views of teaching science appear to support or constrain these prospective teachers' intentions and abilities to teach science as inquiry? Despite support from a professional development school setting, the Interns' teaching strategies represented an entire spectrum of practice—from traditional, lecture‐driven lessons, to innovative, open, full‐inquiry projects. Evidence suggests one of the critical factors influencing a prospective teacher's intentions and abilities to teach science as inquiry, is the teacher's complex set of personal beliefs about teaching and of science. This paper explores the methodological issues in examining teachers' beliefs and knowledge in actual classroom practice. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 613–642, 2007.  相似文献   

20.
Though research has shown that students do not have adequate understandings of nature of science (NOS) by the time they exit high school, there is also evidence that they have not received NOS instruction that would enable them to develop such understandings. How early is “too early” to teach and learn NOS? Are students, particularly young students, not capable of learning NOS due to developmental unreadiness? Or would young children be capable of learning about NOS through appropriate instruction? Young children (Kindergarten through third grade) were interviewed and taught about NOS in a variety of contexts (informal, suburban, and urban) using similar teaching strategies that have been found effective at teaching about NOS with older students. These teaching strategies included explicit decontextualized and contextualized NOS instruction, through the use of children’s literature, debriefings of science lessons, embedded written NOS assessments, and guided inquiries. In each context the researchers interviewed students prior to and after instruction, videotaped science instruction and maintained researcher logs and field notes, collected lesson plans, and copies of student work. The researchers found that in each setting young children did improve their understandings of NOS. Across contexts there were similar understandings of NOS aspects prior to instruction, as well as after instruction. There were also several differences evident across contexts, and across grade levels. However, it is clear that students as young as kindergarten are developmentally capable of conceptualizing NOS when it is taught to them. The authors make recommendations for teaching NOS to young children, and for future studies that explore learning progressions of NOS aspects as students proceed through school.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号