首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
同角三角函数的基本关系式有两个:sin2 α+cos2α=1和tanα=sinα/cosα,它们是三角函数变换的基础,也是证明三角恒等式的主要工具之一.因此,要要求学生能准确地掌握和灵活地运用.  相似文献   

2.
同角三角函数的基本关系式有sin^2α+cos^2α=1,tanα=sinα/cosα利用它可以求值、化简和证明,要求学生牢固掌握,并能运用每个关系式及变形式灵活解题.下面就利用同角三角函数的基本关系式进行解题介绍几种方法.  相似文献   

3.
同角三角函数关系式sin2α+cos2α+cos2α=1tanα=(sinα)/(cosα)在解决三角函数中的化简、求值、恒等变换中占有重要地位,如何让学生在课堂上完成对它的理解及应用便成了一个重要的问题。通过下面的对同角三角函数的基本关系的教学设计,探讨同角三角函数的基本关系教学。  相似文献   

4.
一 2006年高考数学《考试大纲》变动情况 1、文科数学《考试大纲》的变化 (1)三角函数部分,将2005年“考试内容”中的“任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.”改为“任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式:sin2α cos2α=1,sinα/cosα=tanα,tanαcotα=1.正弦、余弦的诱导公式”.同时将“考试要求”中的“(2)掌握任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同  相似文献   

5.
同角三角函数的基本关系主要是指:平方关系:sin2α cos2α=1:商数关系:sinα/cosα=tanα.它反映了同一个角在不同三角函数间的联系,其精髓在"同角".下面就sinα2 cos2α=1概述其常见的运用.  相似文献   

6.
<正>同角三角函数基本关系式是三角函数知识中的一个重要内容,往往在解决问题时会涉及多种方法,在学习时应该注重基本题型的演练和方法总结。一、基本题型演练,训练基本技能例1已知tanα=2,则(2sinα-3cosα)/(4sinα-9cosα)=___。  相似文献   

7.
公式“sin2α+cos2α=1”是高中三角函数问题中一个十分重要的公式,它是同角三角函数基本关系式之一,具有十分广泛的应用.在解决三角问题时,如能活用该公式,充分挖掘其潜在功能,往往可以推陈出新,给人以耳目一新的感觉.一、三角函数式的化简例1化简1-sin6α-cos6αsin2α-sin4α.解1-sin6α-cos6αsin2α-sin4α=1sin2αcos2α-sin2α+cos2αsin2αcos2α×(sin2α+cos2α)2-3sin2αcos2αsin2αcos2α=1-(1-3sin2αcos2α)sin2αcos2α=3.二、用公式求值例2已知sinθ+cosθ=15,θ(0,π),则cotθ=_____.解∵sin2θ+cos2θ=1,∴(sinθ+cos…  相似文献   

8.
大家知道,8in~2α+cos~2α+1,sinα/cosα=tanα是苏教版必修中的两个重要的同角三角函数关系式,它们反映的是同一个角的正弦、余弦、正切三种三角函数间的关系,利用它们可以进行同角的三角函数的求值、化简、证明的恒等变换。正确使用这些关系式能使解题方便流畅,对理解三角变换的方法中的"1"的代换、弦切互化等重要变换技巧有着很大帮助,对培养数学基本素养、思维品质和习惯有着较好的导向作用.下面我们从一条引题说起,看同角三角函数基本关系式的正确使用.  相似文献   

9.
孙兴英 《教师》2008,(10):103-104
该文主要通过同角三角函数的三个基本关系式sin^2α+cos^2α=1,tanα/cosα,tanαcotaα=1,初步探讨了同角三角函数关系式的几个基本的应用:1.根据一个角的某个三角函数值,求该角的其余的三角函数值;2.同角三角函数式的化简和证明。  相似文献   

10.
<正>同角三角函数的基本关系式tanx=sinxcosx与sin2x+cos2x=1,反映了同一个角的不同三角函数之间的必然联系.这些基本关系式的主要应用体现在三角函数的求值、化简、证明中.而在利用关系式解决问题的过程中,其突出的特点是:运算量大,变化灵活,思想丰富等.那么,如何准确快速地解题呢?下面笔者浅谈一下三角函数基本关系式在应用中常见的解题思想和变形方法.一、求值  相似文献   

11.
所谓学生数学解题中的“眼高手低”现象,一般是指学生对数学概念、定理、性质、应用以及例题的讲解,一听就懂、一看就会,部分学生就认为已经掌握了所学知识,其情绪反应也常使教师产生误判,致使对掌握知识的重要一环———知识的形成过程、迁移过程往往重视不够,当学生自己“动手”利用所学知识解决问题时,总是出现这样或那样的错误.“眼高手低”现象在学生数学解题中具有普遍性,原因是多方面的,其主要因素有2个:一是学生的练习量不够;二是教师的教法不当.下面就一道习题的教学来谈学生中的“眼高手低”现象.题目若tanα=2,求sinα-cosαsinα cosα的值.背景分析这是人教大纲版高中第一册(下)第28页中的一道习题,此题出现在学完同角三角函数关系(平方关系、商数关系、倒数关系)之后,这样的安排意在体现同角三角函数关系的应用,巩固新课,使学生加深对同角三角函数关系的认识与理解.反思教学过程大多教师是按“回顾同角三角函数关系→变式(由tanα=2 sinαcosα=2 sinα=2 cosα)→代入(将sinα=2 cosα代入原式约去cosα得值)→模仿性训练”程式进行.也有少数教师直接抛出“分子分母同除以cosα得tanα-...  相似文献   

12.
同角三角函数的基本关系主要是指:平方关系:sin^2α+cos^2α=1:商数关系:sinα/cosα=tanα.它反映了同一个角在不同三角函数间的联系,其精髓在“同角”.下面就sinα^2+cos^2α=1概述其常见的运用。  相似文献   

13.
同角三角函数基本关系式之一——公式"sin2α+cos2α=1"在解决三角式的求值和化简,三角恒等式的证明、三角条件等式的证明、不等式的证明及解方程中都有广泛的应用,主要从正用、逆用和巧用三个方面举例说明。  相似文献   

14.
锐角三角函数的基本关系式有三个:1.商数关系tanα=(sinα)/(cosα),cotα=(cosα)/(sinα);2.倒数关系tanα=1/(cotα);3.平方关系sin~2α+cos~2α=1.注意这些公式的变形,可以增强应用公式的能力,如:  相似文献   

15.
在立体几何中,直线与直线所成的角、直线与平面所成的角及平面与平面所成的角这三种关系中,由两个三角函数关系式:cosα·cosβ=cosγ及sinα·sinβ=sinγ把它们联系起来了.这两个等式的证明及应用,综合运用线线垂直、线面垂直、面面垂直等基础知识。因此掌握它便于准确、快捷地解题.尤其适应解答小、巧、活的立体几何题.  相似文献   

16.
一、知识归纳 1.任意角的三角函数 ①定义:设P(x,y)是角α终边上的任意一点,且|OP|=r(r>0),则 sinα=y/r,cosα=x/r,tanα=y/x,cotα=x/y,secα=r/x,cscα=r/y. ②符号法则 ③同角三角函数关系: sin2α+cos2α=1, cosα·secα=1, tanα=sinα/cosα, ④诱导公式: 1+tan2α=sec2α. sinα·cscα=1, cotα=cosα/sinα. 1+cot2α=csc2α, tanα·cotα=1,  相似文献   

17.
在三角变换中,对于同角三角函数习惯于把sin2α cos2α化简为1,下面举例说明之.【例1】 求证1-sin6α-cos6α1-sin4α-cos4α=32分析:①易见要解决本题,只需“装腔作势”地把左边化简,且化简的结果为32②注意到左边分子、分母的次数分别为6次、4 次, 故对于分子中的“1”可代换成(sin2α cos2α)3,对于分母中的“1”代换成(sin2α cos2α)2;这样可使分子、分母都化成齐次,有利于问题的解决.证明:左边=(cos2α sin2α)3 -sin6α-cos6α(cos2α sin2α)2 -sin4α-cos4α=3(sin4α·cos2α sin2α·cos4α)2sin2α·cos2α=3sin2α·cos2…  相似文献   

18.
同角三角函数之间有三种关系:1.倒数关系如sinα·cosecα=1,cosα·secα=1,tgα·ctgα=1,2.除法关系如tgα=sinα·cosα,ctgα=cosα·sinα;3.平方关系如sin~2α cos~2α=1,1 tg~2α=sec~2α,1 ctg~2α=cosec~2α,这些都是平面三角中进行恒等变换的最基本的公式。根据三角函数的定义,这三组公式是不难推导出来的,但由于它们种类繁多,关系错综复杂,学生在短时期内不易记牢,影响到他们学习新的知识。针对这种情况,我们  相似文献   

19.
同角三角函数的基本关系式主要有:sin^2α+cos^2α=1,sinα/cosa=tanα.它反映了同一个角的不同,三角函数间的联系.下面就sin^2α+cos^2α=1概述其常见的运用.  相似文献   

20.
在三角函数中,sinα±cosα与sinα±cosα俗称“三兄妹”,他们关系密切,如影随形。在有角的范围的条件下,可以自由地进行相互转化。其中sinαcosα=1/2[(sinα+cosα)^2-1]=1/2[1-(sinα-cosα)^2],sinα+cosα与sinα-cosα能通过sinαcosα实现过渡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号