首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
圆的直径式方程是指如果一个圆的直径的端点是A(x1,y1)、B(x2,y2),那么圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0  相似文献   

2.
(接上期)32.圆系方程(1)过点A(x1,y1),B(x2,y2)的圆系方程是:(x-x1)(x-x2) (y-y1)  相似文献   

3.
<正> 用平面向量的知识解决数学问题,称之为向量法.本文通过几个平面解析几何问题的向量解法,介绍向量法的特点及应用此法的意义. 例1(新教材第二册(上)第82页习题第7题(3)) 已知一个圆的直径的端点是A(x1,y1)、B(x2,y2),求证圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0. 证设M(x,y)是圆上的任意一点,则由圆的性质可得  相似文献   

4.
32.圆系方程: (1)过点A(x1,Y1),B(x2,y2),的圆系方程是:(x-x1)(x-x2)+(y-y1)(y-y2)+λ[(x-x1)(y1-y2)-(y-y1)(x1-x2)]=0→←(x-x1)(x-x2)+(y-y1)(y-y2)+λ(ax+by+c)=0,其中ax+by+c=0是直线AB的方程,λ是待定的系数。  相似文献   

5.
1直设线直方线程l的经各过种点形P式都可以统一为点向式0(x0,y0),v=(a,b)为其一个方向向量(ab≠0),P(x,y)是直线上的任意一点,则向量P0P与v共线,根据向量共线的充要条件,存在唯一实数t,使P0P=tv,即x=x0+at,y=y0+bt.消去参数t得直线方程为x-x0a=y-y0b将其变形为b(x-x0)=a(y-y0).易证当ab=0时直线方程也是b(x-x0)=a(y-y0),我们称方程b(x-x0)=a(y-y0)为直线的点向式方程.1)经过点P0(x0,y0)且斜率为k的直线方程:斜率为k的直线方向向量为(1,k),代入点向式得直线方程为k(x-x0)=(y-y0).即为直线方程的点斜式.2)直线斜率为k,在y轴的截距为b,代入点向式得直线方程为k(x-0)=(y-b),也就是直线方程的斜截式.3)经过两点P1(x1,y1),P2(x2,y2)的直线方程:直线方向向量为(x2-x1,y2-y1),代入点向式得直线方程为(y2-y1)(x-x1)=(x2-x1)(y-y1),即为两点式.4)在x轴的截距为a,在y轴的截距为b的直线方程:直线方向向量为(0,b)-(a,0)=(-a,...  相似文献   

6.
椭圆、双曲线方程的三种形式   总被引:1,自引:0,他引:1  
我们知道,直线方程除了一般式、截距式外还有以下三种形式:(1)点斜式y-y0 k(x~x0);(2)斜截式 y=kx b;(3)两点式y-y1/y2-y1=x-x1/x2-x1.  相似文献   

7.
考点解读直线和圆点击考点一直线方程的五种形式(1)斜截式:y=kx b;(2)点斜式:y-y0=k(x-x0);(3)两点式:(y-y1)/(y2-y1)=x-x1/(x2-x1);(4)截距式:x/a y/b=1;(5)一般式:Ax By C=0.注意直线方程的四种特殊  相似文献   

8.
1.经过定点的直线系方程 经过定点M(x0,y0)的直线y-y0=k·(x-x0)(k为参数)是一束直线(不包括与y轴平行的那一条x=x0),所以y-y0=k(x-x0)(是为参数)是通过定点M(x0,y0)的直线系方程.  相似文献   

9.
参数法是求曲线方程的一种重要方法.参数的引进给建立曲线方程带来了方便,但消去参数却并非一件容易的事情,按常规思路有时运算量很大,有时却无法达到消参的目的.本文从消参时解题思路的递进谈谈消去参数的灵活变通.例1自双曲线x2-y2=1上一动点Q引直线l:x+y=2的垂线,垂足为N,求线段QN中点P的轨迹方程.解设Q(x1,y1),P(x,y),(尽可能少设变量)则N(2x-x1,2y-y1).因为QP⊥l,所以y-y1/x-x1=1①又N在l上,所以(2x-x1)+(2y-y1)=2.②I.若按常规思路,则联立①②,解得x1=3x+y-2/2,y1=3y+x-2/2.因为Q在椭圆上,代入Q的轨迹方程,得((3x+y-2)/2)2-((3y+x-2)/2)2=1.变形整理得2x2-2y2-2x+2y-1=0.(以上"解得"、"变形整理"都有比较大的运算量))量)  相似文献   

10.
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(x0,y0)及斜率,其求法为:设P(x0,y0)是曲线y=f(x)上的一点,则以P为切点的切线方程为:y-y0=f’(x0)(x-x0).若曲线y=f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x0.  相似文献   

11.
例1过原点作三次函数y=x3的图像的切线,能作几条?写出其方程.解设切点为P(x0,y0),∵y’=3x2,∴以P为切点的切线的斜率k=3x20,切线方程为y-y0=k(x-x0),即y=3x20x-3x30+y0=3x20x-2x30.由于切线过原点,∴0=3x20·0-2x30,∴x0=0,从而y0=0,k=0.  相似文献   

12.
题目:已知动圆过定点(p2,0)且与直线x=-p2相切,其中p>0.(Ⅰ)求动圆圆心的轨迹C的方程;(Ⅱ)设A、B是轨迹C上异于原点O的两个不同点,直线OA和OB的倾斜角分别为α和β,当α、β变化且α+β为定值θ(0<θ<π)时,证明直线AB恒过定点,并求出该点的坐标.(Ⅱ)解法1设点A(x1,y1),B(x2,y2),则x1=y212p,x2=y222p.由题意知x1≠x2(否则α+β=π),x1,x2≠0,y1≠y2,y1,y2≠0,tanα=2py1,tanβ=2py2.因为AB=(x2-x1,y2-y1)=(y22-y212p,y2-y1),设点p(x,y)为AB上任一点,则AP=(x-y212p,y-y1),AP∥AB.于是y22-y212p(y-y1)=(y2-y1)(x-y212p),即y1+y22py=…  相似文献   

13.
正三次函数及其相关的问题,近年来在各级各类考查试卷中经常出现,其中大部分题型都可利用导数法来求解.本文介绍几种常见类型的求解方法,供参考.一、三次函数的切线例1已知函数f(x)=x3-x+2,试求过点P(1,2)的曲线y=f(x)的切线方程.解析设切点P0(x0,y0),由f'(x)=3x2-1,则f'(x0)=3x20-1,过点P0的方程为y-y0=f'(x0)(x-x0),即y-(x30-x0+2)=(3x20-1)(x-x0).又切线过点P(1,2),则2-(x30-x0+2)=(3x20-1)(1-x0),分解因式得(x0-1)2(2x0+1)=0,解之得x0=1或x0=-12.则f'(-12)=-14,f'(1)=2.故所求的切线方程为y-2=-14(x-1)和y-2=2(x-1).  相似文献   

14.
习题:过圆x2+y2=r2(r〉0)上一点P(x0,y0)的切线方程为_________.解法1(利用△):当切线斜率存在时,设切线方程为:y-y0=k(x-x0),联立x2+y2=r2(r〉0)可得:(1+k2)x2+(2ky0-2k2x0)x-2kx0y0+k2x02+x02=0.  相似文献   

15.
遇到解析几何题,通常是从有关概念、定式(如公式、法则以及曲线标准方程等)和定法(即教材中介绍的基本方法)着手进行思考分析,寻求解题对策,虽一般能奏效,但有时会出现解题过程复杂甚至难以处理的局面.此时,若能针对问题的不同情况,采取一些非常规的解题方法去分析思考,常能将问题变繁为简,化难为易.1 曲线方程的非标准化处理例1 已知抛物线C:y2=2ax(a<0),过点(-1,0)作直线l交抛物线C于A、B两点,是否有以AB为直径且过抛物线C的焦点F的圆?分析 一般设直线l的点斜式方程y=k(x 1)(k≠0),代入方程y2=2ax,整理得k2x2 (2k2-2a)x k2=0.若存…  相似文献   

16.
性质椭圆x2a2+y2b2=1(a>b>0)上任意一点P与过中心的弦AB的两端点A、B的连线PA、PB与对称轴不平行,则直线PA、PB的斜率之积为定值.证明如图1所示,设P(x,y),A(x1,y1),则B(-x1,-y1).∴x2a2+y2b2=1,①∴x21a2+y21b2=1,②由①-②得x2-x21a2=-y2-y21b2,∴y2-y21x2-x21=-b2a2,∴KPA·KPB=y-y1x-x1·y+y1x+x1=y2-y21x2-x21=-b2a2为定值.这条性质是圆的性质“圆上一点对直径所张成的角为直角”在椭圆中的推广,它充分揭示了椭圆的本质属性,因而能简洁地解决问题.推论若M是椭圆的弦AB之中点,则直线OM与直线AB的斜率之积为定值.证明如图2所…  相似文献   

17.
大家知道,直线方程y-y0=k(x-x0)中,若M0(x0,y0)为定点,k为参数,则可视其为过定点M0(x0,y0)的直线系方程.  相似文献   

18.
首先来讨论形如:mx2 ny2=1(m,n均为非零常数)的二次曲线C.假设点M(x0,y0)是曲线C的一条弦的中点(其中x0,y0不同时为0),则有如下结论:图1定理1以点M(x0,y0)为中点的弦所在的直线的方程为:mx0(x-x0) ny0(y-y0)=0.证明设弦的两个端点分别为A(x1,y1),B(x2,y2),则x2=2x0-x1,y2=2y0-y  相似文献   

19.
1.问题高中新教材数学第三册114页谈到导数的几何意义:曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f’(x0),切线方程为: y-y0=f'(x0)(x-x0) (*)所以可利用导数求曲线的切线方程. 问题1 点P不在曲线上如何用导数方法求过点P的切线方程? 问题2 点P在曲线上,过点P作曲线的切线只有一条吗?即方程(*)惟一吗?  相似文献   

20.
朱传美 《新高考》2011,(Z1):83-84
一般地,具有某种共同属性的直线的集合,称为直线系.直线系的方程中除含坐标变量x,y以外,还有可以根据具体条件取不同值的变量,称为参变量,简称参数.常见的5种直线系方程如下:①过点P(x0,y0)的直线系方程为y-y0=k(x-x0)(k为参数);②斜率为k的直线系方程为y=kx+b(b为参数);③与直线Ax+By+C=0平行的直线系方程为Ax+By+λ=0(λ为参数);④与  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号