首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在解析几何中,利用导数求曲线的切线、法线、极值及研究曲线的形状是十分方便而有效的方法。本文试从导数入手,通过探讨两条直线的几何性质,研究二次曲线的中心位置及弦的中点轨迹方程(本文所指二次曲线均为非退化型)。设给定二次曲线方程为: f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=D……(1) 若把y看为常数,方程两边对x求导数,得到一条直线方程为: L_1:f_x=ZAx+By+D=0  相似文献   

2.
1·已知a,b为正实数,且满足a+b=2.(1)求1+1a+11+b的最小值;(2)猜想1+1a2+1+1b2的最小值,并证明;(3)求1+1an+1+1bn的最小值;(4)若a+b=2改成a+b=2p(p≥1),猜想1+1an+1+1bn的最小值.2·已知某椭圆的焦点是F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.3·设曲线C:y=x2(x>0)上的点P0(x0,y0),过P0作曲线C的切线与x轴交于Q1,过Q…  相似文献   

3.
最近,我听了一位教师课题为《曲线方程的求法》的一节课.其中一道例题:求圆心在(2,1),且与x2+y2?3x=0的公共弦所在直线过点(5,?2)的圆的方程.解由已知可设圆的方程为x2+y2?4x?2y+F=0.(1)又x2+y2?3x=0,(2)(1)?(2)得?x?2y+F=0.而直线?x?2y+F=0过点(5,?2),把(5,?2)代入?x?2y+F=0,得F=1.因此所求圆的方程为:x2+y2?4x?2y+1=0.评课会上,有人提出:(1)?(2)所得?x?2y+F=0一定是相交弦吗?若不是,它又是什么呢?本文就此展开讨论.不失一般性,设两个不同的圆22O1:x+y+D1x+E1y+F1=022(D1+E1?4F1>0).(3)22O2:x+y+D2x+E2y+F2=022(D2+E2?4F2>0).(4)(3…  相似文献   

4.
解析法是16世纪数学最重要的成果之一,它是数形结合的桥梁.具体地说就是借助于坐标系,用坐标表示点,把曲线看成是满足某种条件的集合或轨迹,用曲线上点的坐标所满足的方程表示曲线,通过研究方程的性质间接地来研究曲线的性质.也就是用代数方法处理几何问题,用几何直观研究代数问题的一种方法.本文就其在中学数学中的应用进行探究.1轨迹方程的求解例1已知椭圆2214x+y=和直线y=2x+m恒有两个不同的交点,求两交点连线的中点轨迹方程.解设直线与椭圆的两个交点的坐标为M(x1,y1);N(x2,y2),则有221x1+y4=1,(1)222x2+y4=1.(2)(2)?(1)得:(x22?x12)+y…  相似文献   

5.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

6.
一、选特殊直线法.根据题设的几何意义选择特殊直线,利用其方程或几何特征进行估算. 例1 已知两点m(1,5/4)、n(-4,-5/4),给出下列曲线方程:①4x+2y-1=0;②x2+y2=3;③x2/2+y2=1;④x2/2-  相似文献   

7.
处理富于变化的一直线与某一圆锥曲线的综合问题,方法之一就是退到一元二次方程解决,其三步曲是:①直线方程代入圆锥曲线方程;②利用一元二次方程的韦达定理或判别式;③想干嘛就干嘛·本文意在揭示“想干嘛”有哪些多样化的特征,“就干嘛”又有哪些规律化的玄机·一、角平分线、弦长(或面积)问题例1如图1,过点P(1,2)的直线与抛物线y=x2相交于A、B两点,O为坐标原点,当直线OP平分∠AOB时,求直线AB的方程及△AOB的面积·解:直线y-2=k(x-1),代入y=x2得x2-kx+k-2=0·设交点A(x1,y1)、B(x2,y2),由韦达定理x1+x2=k,x1x2=k-2·因为直线OP平…  相似文献   

8.
已知圆O1:x2+ y2+ D1x+ E1y+ F1 =0,圆O2:x2+y2+ D2x+E2y+ F2 =0,D1≠D2,E1≠E2,两圆方程相减得(D1-D2)x+(E1-E2)y+F1-F2 =0,此方程代表一条直线,记作l,叫做两圆的根轴.根据两圆的位置关系,可以得到直线l如下有关结论[1].  相似文献   

9.
1.问题背景 文[1]及文[2]讨论了⊙C1:x2+y2+D1x+E1y+F1=0及⊙C2:x2+y2+D2x+E2y+F2=0无公共点时,方程x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+ F2)=0的意义,但均没有指明方程表示何种曲线. 本文试图通过对方程x2+ y2+ Dx+Ey+F+λ(Ax+By+C)=0及x2+ y2+ D1x+E1y+F1+λ(x2+ y2+ D2x+E2y+ F2)=0的分析,从而阐明:当直线l与⊙M及⊙C1与⊙C2相交(以下简称“相交圆系”)时,上述方程一定表示圆;当直线l与⊙M及⊙C1与⊙C2不相交(以下简称“非相交圆系”)时,上述方程可能表示何种曲线.  相似文献   

10.
解析几何主要是通过计算来研究曲线的方程或曲线的几何性质 ,如果我们能善于应用平面几何图形的基本性质特征 ,有时可使问题容易解答 .1 使用几何特征可以简化解题过程图 1例 1 直线 l:y=k(x+2 2 )与圆 O:x2 +y2 =4相交于 A,B两点 ,O是坐标原点 ,△ ABO的面积为S.(1)求函数 S= f(k) ;(2 )求 S的最大值 ,并求取得最大值时 k的值 .解  (1)原点 O到直线 l的距离为 d=2 2 |k|1+k2 ,弦长 |AB|=2 |OA|2 - d2 =24 - 8k21+k2 ,S =12 |AB |· d =12 · 24 - 8k21+k2 · 2 2 |k|1+k2 =4 2· k2 (1- k2 )1+k2 .∵ |AB|>0且 S>0 ,∴ - 1相似文献   

11.
<正>函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率。由导数的几何意义求切线的斜率,即是求切点处所对应的导数。因此,求曲线在某点处的切线方程,可以先求出函数在该点的导数,即为曲线在该点的切线的斜率,再用直线方程的点斜式写出切线方程,其步骤为:(1)求出函数y=f(x)在点x0处的导数f′(x0);(2)根据直线方程的点斜式,得切线方程  相似文献   

12.
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的4个选项中,有且只有一项是符合题目要求的)1.已知直线l1:y=1,l2:3x+y-1=0,那么直线l1与l2的夹角为()(A)60°(B)120°(C)30°(D)150°2.若a,b∈R,且a3>b3,则下列判断正确的是()(A)1a<1b(B)1a>1b(C)ab3.若直线l经过点(3,-3),且倾斜角为30°,则直线l的方程是()(A)y=3x-6(B)y=33x-4(C)y=3x+43(D)y=33x+24.已知F1、F2是椭圆x42+y22=1的两个焦点,P是椭圆上的点,若PF1·PF2=0,则这样的点P有()(A)2个(B)4个(C)6个(D)0个5.抛物线y=-31x2的准线方程是()(A)y=23(B)x=61(C…  相似文献   

13.
在求导数的方法中,有一个所谓对数求导法.就是先对函数两边取对数,然后再求导数y′.例1 求y=(1+x~2)~(1/2)的导数.解:两边取对数lny=1/2ln(1+x~2)两边对x求导数1/yy′=1/2·2x/(1+x~2)∴y′=·x/(1+(x~2))  相似文献   

14.
定理1圆F以圆锥曲线的一个焦点F为圆中学教研·中学教研·心,以其通径之半为直径.过F的直线l与圆锥曲线、圆F依次交于点A,B,C,D,则|AB|·|CD|为定图1值(其值为圆半径的平方).下面以椭圆为例证明该定理,对于其它圆锥曲线不难类似证明.如图1,设椭圆x2a2+y2b2=1(a>b>0),圆F:(x-c)2+y2=b44a2(其圆心为椭圆的右焦点,直径为通径之半,即r=b22a).过F的直线l与椭圆、圆F依次交于A,B,C,D,欲证|AB|·|CD|=b44a2.证明若直线l的斜率不存在,验证可知结论成立.若直线l的斜率存在,设l的方程为y=k(x-c),①将①代入椭圆方程,整理得(b2+a2k2)x2-2a2ck…  相似文献   

15.
一、选择且 l,下列四个命题中,正确的是() ①两直线平行的充要条件是这两条直线的斜率相同; ②两直线A:x+拭y+鱿=0和A声+B岁+q刃垂直的充要条件是:A.AZ+拭从习; ③过直线l:Ax十场十c=O外一点M(x。,y0)且与l平行的直线方程是:A(卜气,卜 B(y一)。)=0; ④两平行直线Ax+场十C,=O和Ax+毋+q=0的距离是 IC:一CZI 确2+召2 A .QX多逐X王B.(委逗X国 C.似墓K困D,②⑧ 2.设直线1.和l:的方程分别为xsina+与,l和2x+ys ina二2,且1.到12的角为60”, 则sina的值是() A .2犷3一B.4一2犷3 C .2丫3土4 D.4士2V3 ,·设点(·i·。,一”)至,直线一“…  相似文献   

16.
我们知道平面上二次曲线的方程可写为:22a11x+2a12xy+a22y+2a13x+2a23y+a33=0.我们常用的分类方法是将它们经过平移、旋转,化为标准方程:22b11x+b22y+b33=0(b11b22≠0)或b22y2+2b13x=0(b22b13≠0)或b22y2+b33=0(b22≠0).从而,得出,共有九类形式:椭圆、虚椭圆、点椭圆、双曲线、两条相交曲线、抛物线、两条平行直线、两条虚平行直线、两条重合直线.其中,我们称椭圆、双曲、抛物线为非退化的实二次曲线.现在,本文用另一种分类方法,研究这三种曲线的性质.首先,我们定义曲线的相等:定义1若两条曲线经过平移、旋转、反射后重合,则称这两条曲线相…  相似文献   

17.
第一试 1。把长度为a的线段A刀分为Zn等份,以每份为直径在线段的上下两旁作半圆(如图)构成一曲线。则此曲线的长度为__。 一、选择题 1.方程日Zx一1!一1卜2的解的个数是()。 (A)1。(B)2。(C)3。(D)4- 2.设4x“+16万“一4x一169+5二0。则x+刀的值为()。‘只了夭厂b。‘A’‘·(B,合·,。、1、灿少丁·,。、1、工少少月~二~ 4.3。方程 )。}xyl+}x一y+11=0的图象是 (A)三条直线:x二O,万=0,x一g+1=0。 (B)两条直线:x二O,x一g十1=0. (C)一点和一直线:(0,O),x一g+1=0。 (D)两个点:(0,1),(一1,0)。 4.已知a+b+c=10,aZ+右2+cZ=35,a吕+b3+c3=…  相似文献   

18.
将课本例题进行有效的变通及拓展,既能让学生真正掌握所涉及内容又有利于其探究能力的培养,也是提高我们教师处理教材能力的有效途径.全日制普通高级中学教科书(实验修订本·必修)数学第二册(上)第130页图1例2:如图1,直线y=x-2与抛物线y2=2x相交于A、B两点,求证OA⊥OB.证明:设A(x1,y1),B(x2,y2),将直线方程y=x-2代入抛物线y2=2x得:x2-6x+4=0.从而有x1+x2=6,x1·x2=4.又因为y1=x1-2,y2=x2-2,所以y·1y2=(x1-2)(x2-2)=x·1x2-2(x1+x2)+4=-4.∴kOA·kOB=xy11·xy22=yx11yx22=-44=-1.∴OA⊥OB.在讲解完本题之后,我把题目改为:设直线l与抛…  相似文献   

19.
本文介绍直线方程的一种/另类0求法及解题中的广泛应用.如果P(x1,y1),Q(x2,y2)两点坐标满足:Ax1+By 1+C=0,A x 2+By 2+C=0,说明P(x1,y1),Q(x2,y2)两点都在直线A x+By+C=0上,因为两点确定一条直线,所以直线PQ的方程为:Ax+By+C=0,这给出了求直线方程的一种新方法,应用这种方法,能使许多棘手的解析几何问题得到简捷地解决,下面举例说明.例1过点M(4,2)作x轴的平行线被抛物线C:x2=2py(p>0)截得的弦长为4 2.  相似文献   

20.
函数在高中数学和高考中的霸主地位至今仍未受到有威胁的挑战,加上导数的加盟,更滋生和助长函数家族先发制人、一统天下的野心·作为高中数学传统内容的解析几何也不能幸免,函数在解析几何中的兴风作浪,谱写了一曲疯狂的摇滚乐·【例1】已知点A(1,3)、F(1,1)分别是椭圆(y1+61)2+(x1-21)2=1的上顶点和上焦点,位于x轴的正半轴上的动点T(t,0)与F的连线交射线OA于Q·(1)设△OTQ的面积S与t的函数关系式为S=f(t),求f(t)的表达式,并求该函数的最小值;(2)求函数f(t)的单调区间·解:(1)直线OA的方程为y=3x,①TQ的方程为y=11-t(x-t),②或x=1,③…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号