首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1869篇
  免费   17篇
  国内免费   9篇
教育   326篇
科学研究   1088篇
各国文化   19篇
体育   11篇
综合类   14篇
信息传播   437篇
  2023年   2篇
  2022年   8篇
  2021年   13篇
  2020年   12篇
  2019年   571篇
  2018年   456篇
  2017年   181篇
  2016年   23篇
  2015年   16篇
  2014年   61篇
  2013年   47篇
  2012年   60篇
  2011年   57篇
  2010年   39篇
  2009年   37篇
  2008年   41篇
  2007年   42篇
  2006年   36篇
  2005年   50篇
  2004年   30篇
  2003年   37篇
  2002年   24篇
  2001年   16篇
  2000年   13篇
  1999年   4篇
  1993年   1篇
  1991年   1篇
  1985年   1篇
  1983年   4篇
  1982年   3篇
  1980年   1篇
  1978年   3篇
  1977年   4篇
  1976年   1篇
排序方式: 共有1895条查询结果,搜索用时 31 毫秒
101.
Artificial gas-lift (AGL) is one of the most widely used methods in oil production to maintain acceptable oil flow to the processing equipment and sales when the reservoir pressure is not high enough. In spite of its popularity, the AGL process is prone to casing-heading instability, which is revealed as significant flow oscillation. This is undesirable as it results in production losses and unstable behavior that has negative impact on the downstream equipment. Controller design for such a process is very challenging as it exhibits highly nonlinear dynamics. In this work, the predictive generalized minimum variance control (NPGMV) is employed to derive a robust controller based on the state estimation to stabilize AGL process when casing-heading phenomenon occurs. A closed-form optimal control law is obtained based on the Taylor series approximation. Further, a nonlinear state observer is produced and combined with the controller to ensure closed-loop control through variables that are most beneficial to the system performance, which are unmeasurable and can be obtained only via estimation. Through simulation studies, the effectiveness of the proposed controller is demonstrated.  相似文献   
102.
This paper investigates the problem of sliding mode control (SMC) for discrete-time two-dimensional (2-D) systems subject to external disturbances. Given a 2-D Fornasini–Marchesini (FM) local state space model, attention is focused on designing the 2-D sliding surface and sliding mode controller, which guarantees the resultant closed-loop system to be asymptotically stable. Particularly, this problem is solved using the model transformation based method. First of all, sufficient conditions are formulated for the existence of a linear sliding surface guaranteeing the asymptotic stability of the equivalent sliding mode dynamics. Based on this, a sliding mode controller is synthesized to ensure that the associated 2-D FM system satisfies the reaching condition. The efficiency of the proposed 2-D SMC law design is shown by a numerical example. This paper extends the idea of model transformation to the 2-D systems and solves the SMC problem of a more general 2-D model in FM type for the first time.  相似文献   
103.
This paper proposes a novel model free adaptive iterative learning control scheme for a class of unknown nonlinear systems with randomly varying iteration lengths. By applying the dynamic linearization technique along the iteration axis, such systems can be transformed into iteration-depended time varying linear systems. Then, an improved model free adaptive iterative learning control scheme can be constructed only using input and output data of the system. From the rigorous theoretical analysis, it is shown that the mathematical expectation of tracking errors converge to zero as iteration increases. This design does not require any dynamic information of the ILC systems and prior information of randomly varying iteration lengths. An illustrative example verifies the effectiveness of the proposed design.  相似文献   
104.
This paper presents a robust multivariable predictive control for laser-aided powder deposition (LAPD) processes in additive manufacturing. First, a novel control-oriented MIMO process model is derived. Then, the objective of achieving desired geometrical and thermal properties is formulated as one of generating and tracking nominal reference profiles of layer height and melting pool temperature. This is accomplished via a nonlinear model predictive control with guaranteed nominal stability. Furthermore, a local ancillary feedback law is derived to provide robustness to bounded uncertainties. The paper verifies the effectiveness of the proposed control via a case study on a laser cladding process.  相似文献   
105.
In this paper, we study the local stability and bifurcation of a delay-coupled genetic regulatory networks consisting of two modes with the hub structure. By analyzing the equilibrium equation, the number of the positive equilibria is discussed in both the cases that there are inhibition coupling and activation coupling in the networks. It is revealed that multiple equilibria could exist in the developed genetic networks and the number of the equilibria could be distinct under the two cases of delayed-coupling. For the equilibrium, the conditions of the coupling-delay-independent stability and the saddle-node bifurcation are derived with respect to the biochemical parameters. The coupling-delay-dependent stability and the Hopf bifurcation criteria on the biological parameters and the coupling delay are also given. Moreover, the complexity of the algorithm used in this paper is analyzed. The numerical simulations are made to certify the obtained results. The multistability of the developed genetic regulatory networks is displayed. The different effects of the coupling delay on the stability of the genetic networks under different biochemical parameters are shown.  相似文献   
106.
In this paper, a complete procedure for the study of the output regulation problem is established for a class of positive switched systems utilizing a multiple linear copositive Lyapunov functions scheme. The feature of the developed approach is that each subsystem is not required to has a solution to the problem. Moreover, two types of controllers and switching laws are devised. The first one depends on the state together with the external input and the other depends only the error. The conditions ensuring the solvability of the problem for positive switched systems are presented in the form of linear matrix equations plus linear inequalities under some mild constraints. Two examples are finally given to show the performance of the proposed control strategy.  相似文献   
107.
In this paper, a novel adaptive integrated guidance and control (IGC) scheme is proposed for skid-to-turn (STT) missile with partial state constraints and actuator faults. Considering the strict-feedback form of the IGC model, the dynamic surface control (DSC) approach is adopted to design the IGC scheme. To prevent the attack angle, sideslip angle and velocity deflection angle from violating the constraints, the barrier Lyapunov function (BLF) and modified saturation function are employed in the IGC design procedure. Moreover, an auxiliary system is constructed to remove the adverse effects that caused by the modified saturation function. The adaptive laws are constructed to estimate the actuation effectiveness of actuators and the upper bounds of lumped uncertainties in the IGC model. It is theoretically shown that all signals in the closed-loop system are bounded while the state constraints are not violated in presence of actuator faults and uncertainties. Numerical simulation results are presented to verify the effectiveness and robustness of the proposed IGC scheme.  相似文献   
108.
This paper investigates spacecraft output feedback attitude control problem based on extended state observer (ESO) and adaptive dynamic programming (ADP) approach. For the plant described by the unit quaternion, an ESO is first presented in view of the property of the attitude motion, and the norm constraint on the unit quaternion can be satisfied theoretically. The practical convergence proof of the developed ESO is illustrated by change of coordinates. Then, the controller is designed with an involvement of two parts: the basic part and the supplementary part. For the basic part, a proportional-derivative control law is designed. For the supplementary part, an ADP method called action-dependent heuristic dynamic programming (ADHDP) is adopted, which provides a supplementary control action according to the differences between the actual and the desired system signals. Simulation studies validate the effectiveness of the proposed scheme.  相似文献   
109.
Mismatched uncertainty and chattering appear as two challenges in sliding mode control. To overcome the problem of mismatched uncertainty, multiple sliding surfaces with virtual inputs are proposed. Accordingly, we have proposed two new methods based on designed neural observer: sliding mode control (SMC) and dynamic sliding mode control (DSMC) methods. Although, the proposed SMC can significantly cope with the mismatched uncertainties, but it suffers from chattering phenomenon. The chattering problem can be removed in DSMC, because an integrator is placed before the system. This results in increased number of the system states. This new state can be identified with the proposed neural observer. Note that in both proposed approaches, the robust performance (invariance property) of system is reserved, even in the presence of mismatch uncertainties. Then, to have a valid comparison the proposed DSMC is also designed using loop transfer recovery observer (LTRO). This comparison shows the good performance of the DSMC based neural networks. Moreover, the upper bound of uncertainties is not used in SMC and DSMC controllers and also in the neural observer and LTRO, which is important in practical implementation. Finally, comparing the equations, one can see the simplicity of DSMC in concept and also in realization.  相似文献   
110.
In a microgrid (MG) topology, the secondary control is introduced to compensate for the voltage amplitude and frequency deviations, mainly caused by the inherent characteristics of the droop control strategy. This paper proposes an accurate approach to derive small signal models of the frequency and amplitude voltage at the point of common coupling (PCC) of a single-phase MG by analyzing the dynamics of the second-order generalized integrator-based frequency-locked loop (SOGI-FLL). The frequency estimate model is then introduced in the frequency restoration control loop, while the derived model of the amplitude estimate is introduced for the voltage restoration loop. Based on the obtained models, the MG stability analysis and proposed controllers’ parameters tuning are carried out. Also, this study includes the modeling and design of the synchronization control loop that enables a seamless transition from island mode to grid-connected mode operation. Simulation and practical experiments of a hierarchical control scheme, including traditional droop control and the proposed secondary control for two single-phase parallel inverters, are implemented to confirm the effectiveness and the robustness of the proposal under different operating conditions. The obtained results validate the proposed modeling approach to provide the expected transient response and disturbance rejection in the MG.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号