首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
教育   4篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.

Involving students in the co-design of educational curricula and practices can benefit both students and teachers. Students who participate in co-design may show better learning or increased agency or engagement. In the present study, we investigated what kind of science knowledge or practices can be learned by student co-designers while engaging in co-design practices and how that learning happens with six high school students. We created a model to guide the analysis of students’ learning with technology in co-designing processes. The results revealed that students learned engineering design process even if no explicit instruction on engineering learning was given. Also, our analysis suggested that co-designing with technology enabled learning of the engineering design process and potentially furthered learning of science because it promoted knowledge integration. The results have implications for understanding and enhancing engineering design and science learning through co-designing with technology.

  相似文献   
2.
3.
The aim of this study was to evaluate the effects of living animals on pupils’ intrinsic motivation and knowledge. Various studies from the late 1970s and 1980s stress the high effectiveness of authentic learning experiences in pupils’ knowledge acquisition. However, there are only few current empirical studies on this topic. The research question of our study is to assess whether the use of living animals in the biology classroom supports intrinsic motivation and knowledge acquisition. In a pre-/post-test design, 185 fifth graders received two different treatments: the experimental group (N?=?74) was taught with living harvest mice (Micromys minutus) and the control group (N?=?111) received lessons with the same content which was presented in short film clips on laptop computers. Knowledge acquisition was assessed with open-ended and closed questions, while intrinsic motivation was tested with an adapted version of the Intrinsic Motivation Inventory (IMI). There were no differences in knowledge acquisition between the treatments. However, the results of the IMI showed significant differences in favour of the experimental group in interest/enjoyment, perceived competence, and perceived autonomy. Thus, living animals exert a positive influence on motivation.  相似文献   
4.
Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include “computational thinking” as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics curricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号