首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
教育   1篇
体育   6篇
  2017年   1篇
  2013年   4篇
  2008年   1篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 718 毫秒
1
1.
Skin and core tissue cooling modulates skeletal muscle oxygenation at rest. Whether tissue cooling also influences the skeletal muscle deoxygenation response during exercise is unclear. We evaluated the effects of skin and core tissue cooling on skeletal muscle blood volume and deoxygenation during sustained walking and running. Eleven male participants walked or ran six times on a treadmill for 60 min in ambient temperatures of 22°C (Neutral), 0°C for skin cooling (Cold 1), and at 0°C following a core and skin cooling protocol (Cold 2). Difference between oxy/deoxygenated haemoglobin ([diffHb]: deoxygenation index) and total haemoglobin content ([tHb]: total blood volume) in the vastus lateralis (VL) muscle was measured continuously. During walking, lower [tHb] was observed at 1 min in Cold 1 and Cold 2 vs. Neutral (P?0.05). Lower [diffHb] was seen at 1 and 10 min in Cold 2 vs. Neutral by 13.5 ± 1.2 µM and 15.3 ± 1.4 µM and Cold 1 by 10.4 ± 3.1 µM and 11.1 ± 4.1 µM, respectively (P?0.05). During running, [tHb] was lower in Cold 2 vs. Neutral at 10 min only (P = 0.004). [diffHb] was lower at 1 min in Cold 2 by 11.3 ± 3.1 µM compared to Neutral and by 13.5 ± 2.8 µM compared to Cold 1 (P?0.001). Core tissue cooling, prior to exercise, induced greater deoxygenation of the VL muscle during the early stages of exercise, irrespective of changes in blood volume. Skin cooling alone, however, did not influence deoxygenation of the VL during exercise.  相似文献   
2.
Abstract

In this study, we examined the effects of time-of-day-specific strength training on maximum strength and electromyography (EMG) of the knee extensors in men. After a 10-week preparatory training period (training times 17:00–19:00 h), 27 participants were randomized into a morning (07:00–09:00 h, n = 14) and an evening group (17:00–19.00 h, n = 13). Both groups then underwent 10 weeks of time-of-day-specific training. A matched control group (n = 7) completed all testing but did not train. Unilateral isometric knee extension peak torque (MVC) and one-repetition maximum half-squat were assessed before and after the preparatory training and after the time-of-day-specific training at times that were not training-specific (between 09:00 and 16:00 h). During training-specific hours, peak torque and EMG during MVC and submaximum isometric contraction at 40% MVC were assessed before and after the time-of-day-specific training. The main finding was that a significant diurnal difference (P < 0.01) in peak torque between the 07:00 and 17:00 h tests decreased after time-of-day-specific training in the morning group but not in the evening or control groups. However, the extent of this time-of-day-specific adaptation varied between individuals. Electromyography during MVC did not show any time-of-day-specific adaptation, suggesting that peripheral rather than neural adaptations are the main source of temporal specificity in strength training.  相似文献   
3.
The benefits of living and training at altitude (HiHi) for an improved altitude performance of athletes are clear, but controlled studies for an improved sea-level performance are controversial. The reasons for not having a positive effect of HiHi include: (1) the acclimatization effect may have been insufficient for elite athletes to stimulate an increase in red cell mass/haemoglobin mass because of too low an altitude (<2000-2200 m) and/or too short an altitude training period (<3-4 weeks); (2) the training effect at altitude may have been compromised due to insufficient training stimuli for enhancing the function of the neuromuscular and cardiovascular systems; and (3) enhanced stress with possible overtraining symptoms and an increased frequency of infections. Moreover, the effects of hypoxia in the brain may influence both training intensity and physiological responses during training at altitude. Thus, interrupting hypoxic exposure by training in normoxia may be a key factor in avoiding or minimizing the noxious effects that are known to occur in chronic hypoxia. When comparing HiHi and HiLo (living high and training low), it is obvious that both can induce a positive acclimatization effect and increase the oxygen transport capacity of blood, at least in 'responders', if certain prerequisites are met. The minimum dose to attain a haematological acclimatization effect is >12 h a day for at least 3 weeks at an altitude or simulated altitude of 2100-2500 m. Exposure to hypoxia appears to have some positive transfer effects on subsequent training in normoxia during and after HiLo. The increased oxygen transport capacity of blood allows training at higher intensity during and after HiLo in subsequent normoxia, thereby increasing the potential to improve some neuromuscular and cardiovascular determinants of endurance performance. The effects of hypoxic training and intermittent short-term severe hypoxia at rest are not yet clear and they require further study.  相似文献   
4.
Abstract

The main aim of this study was to assess neuromuscular fatigue during a typical high-load, low-repetition loading protocol. Muscle stimulations were used to assess maximum voluntary contraction, resting single- and double-pulse twitch characteristics, and superimposed double-pulse twitch force (used to calculate voluntary activation) before and after an acute knee extension loading protocol. In our participants, who had previous resistance training experience, the mean voluntary activation level was 96.2% in an unfatigued state. Maximum voluntary contraction (?11.8%), resting double-pulse twitch force (?10.6%), and voluntary activation (?2.1%) were markedly decreased as a consequence of loading (P < 0.05). In addition, although potentiated twitch characteristics were observed during the loading protocol, this was short-lived, as fatigue surpassed the potentiation mechanisms. Our results show that both central and peripheral mechanisms contributed to neuromuscular fatigue during the present loading protocol.  相似文献   
5.
In this study, we examined the effects of time-of-day-specific strength training on maximum strength and electromyography (EMG) of the knee extensors in men. After a 10-week preparatory training period (training times 17:00-19:00 h), 27 participants were randomized into a morning (07:00-09:00 h, n = 14) and an evening group (17:00-19.00 h, n = 13). Both groups then underwent 10 weeks of time-of-day-specific training. A matched control group (n = 7) completed all testing but did not train. Unilateral isometric knee extension peak torque (MVC) and one-repetition maximum half-squat were assessed before and after the preparatory training and after the time-of-day-specific training at times that were not training-specific (between 09:00 and 16:00 h). During training-specific hours, peak torque and EMG during MVC and submaximum isometric contraction at 40% MVC were assessed before and after the time-of-day-specific training. The main finding was that a significant diurnal difference (P < 0.01) in peak torque between the 07:00 and 17:00 h tests decreased after time-of-day-specific training in the morning group but not in the evening or control groups. However, the extent of this time-of-day-specific adaptation varied between individuals. Electromyography during MVC did not show any time-of-day-specific adaptation, suggesting that peripheral rather than neural adaptations are the main source of temporal specificity in strength training.  相似文献   
6.
In the globalized neoliberal economy, business schools and business science has become a dominant societal institution and discourse. However, this has not directly strengthened the position of business schools in the societal networks of power. This paper examines this paradox by depicting who are the actors in the field and how these actors seek to influence what passes as legitimate knowledge in the discipline of business studies. Informed by actor network theory (Latour in Reassembling the social: an introduction to actor-network theory. Oxford University Press, Oxford, 2005) and drawing on the antenarrative analysis (Boje in Narrative methods for organizational and communication research. Sage Publications, London, 2001), the paper considers the understated dynamics of negotiation over the form and content of academic knowledge in a local context (cf. Alferoff and Knights in Br J Manag 20(1):125–142, 2009). The paper depicts the change that has occurred from the early 1990s till today. First, the potentially influential actors will be identified. Second, two maps of networks in different points of time will be traced. In the contemporary network, the gatekeeper role of business schools is undermined by new prominent actors. The paper shows how business schools, instead of gaining a high power position, are now more dependent on a variety of other actors, who increasingly define what passes as relevant and valid knowledge in business studies.  相似文献   
7.
Altitude and endurance training   总被引:4,自引:0,他引:4  
Rusko HK  Tikkanen HO  Peltonen JE 《Journal of sports sciences》2004,22(10):928-44; discussion 945
The benefits of living and training at altitude (HiHi) for an improved altitude performance of athletes are clear, but controlled studies for an improved sea-level performance are controversial. The reasons for not having a positive effect of HiHi include: (1) the acclimatization effect may have been insufficient for elite athletes to stimulate an increase in red cell mass/haemoglobin mass because of too low an altitude (< 2000-2200 m) and/or too short an altitude training period (<3-4 weeks); (2) the training effect at altitude may have been compromised due to insufficient training stimuli for enhancing the function of the neuromuscular and cardiovascular systems; and (3) enhanced stress with possible overtraining symptoms and an increased frequency of infections. Moreover, the effects of hypoxia in the brain may influence both training intensity and physiological responses during training at altitude. Thus, interrupting hypoxic exposure by training in normoxia may be a key factor in avoiding or minimizing the noxious effects that are known to occur in chronic hypoxia. When comparing HiHi and HiLo (living high and training low), it is obvious that both can induce a positive acclimatization effect and increase the oxygen transport capacity of blood, at least in 'responders', if certain prerequisites are met. The minimum dose to attain a haematological acclimatization effect is > 12 h a day for at least 3 weeks at an altitude or simulated altitude of 2100-2500 m. Exposure to hypoxia appears to have some positive transfer effects on subsequent training in normoxia during and after HiLo. The increased oxygen transport capacity of blood allows training at higher intensity during and after HiLo in subsequent normoxia, thereby increasing the potential to improve some neuromuscular and cardiovascular determinants of endurance performance. The effects of hypoxic training and intermittent short-term severe hypoxia at rest are not yet clear and they require further study.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号