首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
科学研究   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 109 毫秒
1
1.

Introduction:

Additional nucleotide substitutions in the 3′-untranslated region of prothrombin gene could explain some thrombotic events and also adverse pregnancy outcomes. We describe the first case of a homozygous 20209C>T mutation as the cause of deep vein thrombosis in a Spanish patient.

Case and methods:

The 56-year-old male patient with a partial tear of the Achilles tendon developed calf (tibial) deep vein thrombosis after immobilization and was treated with an anticoagulant. To determine if the deep vein thrombosis was of genetic origin, a peripheral blood DNA sample was analysed for the presence of the three most frequent mutations associated with thrombotic events: factor V Leiden (1691G>A), prothrombin (20210G>A) and methylene tetrahydrofolate reductase (677C>T). The presence or absence of the normal allele of prothrombin could not be determined using the PTH-FV-MTHFR StripAssay (Vienna Lab).

Results:

Comprehensive analysis showed that the patient had a variant interfering with the polymerase chain reaction product, we sequenced the entire prothrombin gene and found that the patient had a homozygous C>T mutation at position 20209; this interfered with the polymerase chain reaction product, which needs a C at this position to be able to bind to the wild-type probe present in the test strip.

Conclusion:

The homozygous 20209C>T mutation and the presence of the mutation 677C>T in heterozygosity explained the patient’s deep vein thrombosis because the combination of mutations would increase the risk of thrombosis. Suitable genetic counselling should be provided to the patient and first-degree relatives as it important to detect prothrombin gene variants that could increase risk for thrombotic events.  相似文献   
2.

Introduction:

Today, the pneumatic tube transport system (PTS) is used frequently because of its advantages related to timing and speed. However, the impact of various types of PTS on blood components is unknown. The aim of this study was to examine the influence of PTS on the quality of routine blood cell counts, erythrocyte sedimentation, and certain blood coagulation tests.

Materials and methods:

Paired blood samples were obtained from each of 45 human volunteers and evaluated by blood cell count, erythrocyte sedimentation, and several coagulation tests, including prothrombin time (PT) and activated partial thromboplastin time (aPTT). Blood samples were divided into 2 groups: Samples from group 1 were transported to the laboratory via the PTS, and samples from group 2 were transported to the laboratory manually. Both groups were evaluated immediately by the tests listed above.

Results:

The blood sample test results from groups 1 and 2 were evaluated and compared. No statistically significant differences were observed (P = 0.069–0.977).

Conclusion:

The PTS yielded no observable effects on blood cell counts, erythrocyte sedimentation, or PT and aPTT test results. We concluded that the PTS can be used to transport blood samples and yield reliable results for blood cell counts, erythrocyte sedimentation, and several coagulation tests.  相似文献   
3.

Introduction

The aim of the present study was to validate prothrombin time (PT) international normalized ratio (INR) results obtained using Steelex test reagents and a Steelex coagulometer (Steelex Scientific Instrument Company, Beijing, China), in comparison with use of a well-established standard test employing Pacific Hemostasis reagents (Fisher Diagnostics, Middletown, VA, USA) and Teco Coatron A4 coagulometer (Teco Medical Instruments GmbH, Neufahrn, Germany).

Materials and methods:

Between- and within-day coefficients of variation (CVs) of both assays were calculated using control samples provided by the test manufacturers. Samples from 90 subjects were collected and INR values were determined in a double-blind parallel manner employing both systems.

Results:

The within-day coefficients of variation (CVs) in INR estimates ranged from 2.6% (INR = 1.12) to 3.1% (INR = 2.51) for the Steelex system and from 2.1% (INR = 1.09) to 1.8% (INR = 2.8) for the Pacific test; the between-day values ran from 3.4% (INR = 1.16) to 7.9% (INR = 2.64) and from 3.3% (INR = 1.1) to 2.3% (INR = 2.7), respectively. Passing-Bablok fit of the of the Steelex and Pacific methods yielded the equation: Steelex INR = 0.85 (0.79–0.91) × Pacific INR + 0.12 (−0.02–0.21), whereas the CUSUM linearity P value was < 0.01. The mean bias as determined by the Bland-Altman test was −0.156 (−0.912–0.600).

Conclusion:

The results obtained using Steelex reagents and the M600H coagulometer are not equivalent to those obtained using Pacific Hemostasis reagents and a Teco Coatron A4 coagulometer, at least in the therapeutic range.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号