首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
本文将推广关于复合函数单调性的结论,并得到用换元法来解决较为复杂函数的单调性的一般方法.关于复合函数的单调性,大家已熟悉如下结论:若y=f(x),x=g(t),x∈[m,n],t∈[a,b]都是单调函数,则复合函数y=f[g(t)]也是单调函数,并且当外层函数y=f(x)在[m,n]上为增  相似文献   

2.
在定积分中,有这样一条性质 定理 若函数f(x)在区间[a,b]上可积,且任取x∈[a,b],有f(x)≥0,则 integral from n=a to bf(x)dx≥0 它称为定积分的单调性。 该性质的条件中f(x)≥0可能有以下情况发生1°x∈[a,b],f(x)=0;2°Ex∈[a,b]使f(x)=0,同时Ex∈[a,b]使f(x)>0;3°x∈[a,b],f(x)>0。  相似文献   

3.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

4.
不等式的证明是数学分析中经常遇到而且比较困难的问题,本文将对数学分析中不等式证明的常用方法作简单的归纳与总结。一、利用函数单调性证明不等式这是最常用最基本的方法。由文[1]定理7.1,若函数.f在(a,b)可导,则.f在(a,b)内递增(递减)的充要条件是f'(x)≥0(f'(x)≤0),x∈(a,b)。特别地,设函数f在(a,b)内可异,若f'(x)>0(f'(x)相似文献   

5.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径.途径一构造差函数直接作差,即构造差函数,是构造辅助函数的最主要方法.例1求证:不等式x-x22<1n(1+x)0,所以y=f(x)在(0,+∞)上单调递增,因为x>0,且f(x)在…  相似文献   

6.
2011年大学保送生考试已结束.本文例举清华大学、北京大学保送生考试的两个题目并给出解答,以飨读者.题1已知f(x)是定义在[0,1]上的非负函数,且f(1)=1,对任意的x、y、x+y,∈[0,1]都有f(x+y)≥f(x)+f(y).证明:f(x)≤2x(x∈[0,1]).(2011,清华大学保送生考试)证明对任意x、△x、x+△x∈[0,1],有f(x+△x)-f(x)≥f(△x)≥0.所以,f(x)是不减函数.对任意的x∈[0,1],必存在n∈N_+,使得x∈[1/2~n,1/2~(n-1)).  相似文献   

7.
<正>例设函数f(x)=ex-1-x-ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时,f(x)≥0,求a的取值范围.参考答案如下:(1)a=0时,f(x)=ex-1-x,f′(x)=ex-1.当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.故f(x)在(-∞,0)上单调减少,在(0,+∞)上单调增加.  相似文献   

8.
求不等式恒成立的参数的取值范围,是中学教学的难点之一,也是高考、数学竞赛的热点.下面就此问题的几种基本解法加以论述. 一、利用一次函数的性质 一次函数y=f(x)=ax+b在x∈[m,n]上恒大于零的充要条件是:{a>0,f(m)>0 或{a<0,f(n)>0或{f(m)>0,f(n)>0.(对于y=f(x) =ax+b恒小于零的条件亦可类似给出) 例1 若f(x)=(x-1)m2-6xm+x+1在区间[0,1]上恒为正值,求实数m的取值范围.  相似文献   

9.
我们知道√g(x)<f(x)(=){f(x)≥0,g(x)≤0,g(x)<[f(x)]2.√g(x)<f(x)(=){f(x)≥0,g(x)≤0,g(x)>[f(x)]2.或{f(x)<0,g(x)≥0.将无理不等式转化为等价的代数不等式(组)来解,往往须考虑符号,运算复杂.下面介绍另一求法,其理论根据是一元连续实函数y=f(x)的根(存在)将其定义域分成的各个区间上具有保号性.此方法步骤如下:  相似文献   

10.
<正>1 题目呈现题目 (2022年高考北京卷第20题)已知函数f(x)=exln(x+1).(1)求曲线y=f(x)在点(0,f(0))处切线方程;(2)设g(x)=f′(x),讨论函数g(x)在[0,+∞)上的单调性;(3)证明:对任意的s,t∈(0,+∞),有f(s+t)>f(s)+f(t).本题主要考查导数的几何意义、利用导数研究函数的单调性及不等式的证明.  相似文献   

11.
抽象函数是没有给出具体解析式的函数,内容一般涉及到函数的单调性、周期性、奇偶性,不等式性质、解不等式或不等式组、数学归纳法等;题型常有求值、求字母范围、比较函数值的大小、解不等式、证明和开放型题(缺少条件或结论的题)等.掌握抽象函数问题的解法,可以加深我们对函数本质的认识,提高分析和解决问题的能力 一、取特殊值法 例1 已知f(x)在(0,+∞)上有定义,且满足条件:(1)f(x)在(0,+∞)上单调递减,且f(x)≥1/x2;  相似文献   

12.
在以前高中数学教材中,我们往往只能用一些代数的方法来研究函数的单调性问题.由于教材内容的限制,这些方法往往运算繁琐,不易掌握其规律.例如,给出一个在某区间上可导的含参数的单调函数,要我们求参数的范围问题,大家往往解答不够完整.下面给大家引入一个定理,能为我们解决这类问题提供依据.定理若函数f(x)在(a,b)内可导,则函数f(x)在(a,b)内单调递增(或单调递减)的充要条件是在(a,b)内f′(x)≥0(或f′(x)≤0).证明必要性:设函数f(x)在(a,b)内单调递增,对任意x∈(a,b)及自变量的改变量Δx,(使x Δx∈(a,b)),由于函数f(x)在(a,b)内单调递增,…  相似文献   

13.
一、利用基本不等式或不等式的性质放缩例1 若g(x)=f(x) 1,f(x)=log2~(1/2)(x 1),m、n、t>0且n2=mt,求证:g(m) g(t)≥2g(n).  相似文献   

14.
<正>本文分类介绍有关放缩法在不等式证明中的技巧,兹例说如下.一、利用函数的单调性例1(2014年江苏高考题)已知函数f(x)=ex+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,  相似文献   

15.
本文讨论求函数值域的八种方法:一、利用函数的单调性求值域若函数y=f(x),x∈[a,b]是单调函数,则函数y=f(x)的值域是[f(b),f(a)]或[f(a),f(b)]。  相似文献   

16.
不等式恒成立问题是高考中一类常见的典型问题.这类问题的解决,大多可用函数的观点来审视,用函数的有关性质来处理.而导数是研究函数性质的有力工具,因而将不等式f(x)≥g(x)恒成立转化为F(x)=f(x)-g(x)≥0恒成立问题,再用导数方法探讨F(x)的单调性及最值,就顺理成章了.一、利用函数的单调性例1(2006年全国卷Ⅱ)设函数f(x)=(x 1)ln(x 1).若对所有x≥0,都有f(x)≥ax成立,求实数a的取值范围.解:构造相应函数g(x)=(x 1)ln(x 1)-ax,于是不等式f(x)≥ax转化为g(x)≥g(0)对x≥0恒成立的问题.对g(x)求导数,得g′(x)=ln(x 1) 1-a.令g′(x)=0,解得x=e…  相似文献   

17.
与自然数n有关的不等式的证明通常采用数学归纳法。这里我们给出可与数学归纳法相媲美的新方法——自然数函数单调性法。定理若n、n_0∈N,且n>n_0,f(n)是自然数n的单调递增(或单调递减)函数且f(n_0)≥m(或≤M),则f(n)≥m(或≤M)。由函数的单调性知上面的定理是显然的,下面举例说明它的应用。例1 求证:当n是不小于3的整数时,有n~(n+1)>(n+1)~n。证明设f(n)=((n+1)~n)/(n~(n+1)),  相似文献   

18.
我们熟知某些初等函数的凹凸情况,对较复杂的初等函数的凹凸判断可由微分学知:若f(x)在(a,b)上有二阶导数,且f″(x)>0(<0),则f(x)在(a,b)上是凹(凸)函数,对凹(凸)函数有如下性质。(证略) 如果f(x)是(a,b)上的凹(凸)函数,n是自然数,则对x_i∈(a,b)(i=1,2,…,n)有不等式(f(x_1) f(x_2) … f(x_n))/n≥(≤)f((x_1 x_2 … x_n)/n) 当n>1时,上式等号成立的充要条件是x_1=x_2=…=x_n。灵活巧妙地运用上述性质,对证明某些不等式非常有效,常可使竞赛题迎刃而解。例1 设n为自然数,a、b为正实数,  相似文献   

19.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

20.
一、利用函数的单调性求值域如果y=f(x),x∈[a,b],是单调函数,则由函数的单调性可知y=f(x)的值域为[f(a),f(b)]。例1.已知:y=lg(x+1)+5,x∈[0,99]。求函数的值域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号