首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
文章主要应用NCEP1°×1°再分析资料。从500hpa合卫星云图(TBB)、不稳定条件、物理场特征、水汽条件等,对2011年7月21日-2011年7月30日发生在青藏高原南部(墨竹工卡)发生的一次强降水过程进行分析。这次强降水发生的时间是2011年7月28号18时,引起这次强降水的主要特征有:①西伸过程明显的西太平洋副高,交汇在西藏的冷暖空气和青藏高原以北存在的低涡系统;②TBB值越低,对应的云顶就越高,存在的云系颜色就越深,对流也就越旺盛,降水的可能性也就变大;③K指数直线上升,说明大气层结很不稳定,有形成降水的可能性。假相当位温随高度增加而降低,气层下部的假相当位温比上部的高,导致大气层结不稳定。只要在拥有较好的水汽条件,以及对流产生的触发机制,则会造成对流运动的发展,就有利于产生强对流天气,造成暴雨;④低层辐合,高层辐散的有利条件造成的上升运动是本次降水的主要因素;⑤高温中心说明有上升气流,正涡度有利于气旋涡度的增加,水汽通量散度小于零为辐合等。  相似文献   

2.
"菲特"在浙江引发了全省性暴雨和大暴雨天气。本文主要是通过NECP资料从大尺度环流形势、动力、热力和水汽条件等方面分析台风暴雨特征和形成机理,结果表明:(1)从环流形势来看,暴雨可以分为两个阶段,第一阶段主要由台风环流造成,第二阶段由残余低压环流和冷空气共同作用而引发;(2)暴雨水汽来源为副高南侧的东风急流,"丹娜丝"的存在有利于较强水汽通量的维持;(3)低层辐合高层辐散的分布有利于"菲特"强度的维持,暴雨中心辐合辐散交替分布,近地面辐合的增强预示着暴雨增幅;(4)弱冷空气的侵入有利于低层能量锋区的加强,促进降水。  相似文献   

3.
本文利用2010—2014年6—7月逐日ERA再分析资料(0.75°×0.75°),以及2010—2015年6—7月江苏71个基本站点降水实况观测资料、24个地基GPS遥感监测数据反演PWV资料,对江苏梅汛期不同背景的水汽特征量对比探讨,分析结果表明,不同天气背景下水汽特征量反映不同,相对湿度和有无降水关系较好,比湿与PWV均可用于判断降水量级大小,并制定了不同降水量级所对应比湿与PWV值判断指标,梅汛期暴雨过程平均PWV值均在60mm左右,较弱降水过程高10mm左右,无降水天气一般在30~33mm。江苏不同区域暴雨过程中PWV空间分布呈现明显差异,当全省PWV均较高时,暴雨出现在江苏北部地区,仅沿江苏南PWV较大时,暴雨出现在江苏南部地区,暴雨区与PWV大值区相对应。不同区域暴雨区均出现在相对湿度大值区与水汽含量高值重叠区域,但南北不同区域暴雨过程中湿度和大气中水汽含量分布型态不同,在此基础上建立了江苏不同区域暴雨形势与水汽配置图。  相似文献   

4.
利用常规观测资料和NCEP再分析资料对2017年7月呼和浩特大部地区降水偏少的特征及成因进行了初步分析。结果表明:2017年7月呼和浩特降水大部地区偏少,且7月降水时空分布不均。500hPa高度纬向环流为主,呼和浩特地区为正距平;西太副高偏强,位置偏北,不利于北方冷空气南下,导致7月降水偏少。7月低层风场以辐散为主,不利于水汽辐合,也对降水偏少有一定的影响。整层水汽条件较差是降水偏少的又一原因。  相似文献   

5.
利用NCEP1°×1°逐6 h再分析资料和浙江省自动站雨量资料,对2107年6月12~13日1702号台风和梅雨锋共同作用下浙江地区1次暴雨天气进行诊断分析,结果表明:(1) 1702号台风未使副高北抬中断梅雨,而与西退副高北侧的梅雨锋共同作用产生暴雨;(2)高低空急流的耦合以及高空辐散场抽吸作用为暴雨提供了动力条件。台风上空的反气旋环流产生的高空辐散加强了暴雨上空的抽吸作用;中低层激发出局地气旋性涡旋的垂直环流的上升支与锋面次级环流垂直上升支叠加,促使上升运动加强;(3)台风强度及其结构特点,为暴雨水汽通道的建立提供有利条件,暴雨发生在水汽通量辐合中心附近;(4)暴雨发生在由南北热力差异造成的E指数密集带的能量锋中,不稳定层结并非暴雨产生的必要条件。  相似文献   

6.
利用常规观测资料、自动气象站观测资料及NCEP1°×1°再分析资料,对2016年10月和2018年9月登陆我国华南沿海的2次台风在浙江省产生的暴雨过程进行对比分析,结果表明:(1)1622号台风“海马”暴雨属于台风本体环流降雨,1822号台风“山竹”暴雨属于台风远距离暴雨。(2)前者水汽主要来自南海,沿台风低压环流及副高边缘的偏南风急流向暴雨区输送,后者水汽主要来自东海和西太平洋,沿副高西南侧的东南气流向暴雨区输送,前者急流强度和水汽通量均强于后者。(3)前者过程后期才有干冷空气从底层侵入,强度较弱,暴雨中尺度系统特征不明显,降水对流性较弱,后者整个过程都有干冷空气侵入,前期来源于对流层低层,后期来源于对流层高层,冷空气的侵入激发了中尺度对流系统的发生发展,降水对流性较强。(4)2次过程的动力学特征也有所不同,前者正涡度中心发展高度比后者低,但强度偏强,后者辐合辐散发展高度比前者深厚,但强度偏弱。  相似文献   

7.
利用常规天气观测、NCEP再分析、区域自动站等资料对2020年5月16日—18日兴安盟地区一次暴雨天气过程进行了分析。结果表明:此次降水过程降水大值区呈现明显的带状分布,相对应的,兴安盟中部地区有一致的上升运动区,为暴雨的产生提供了强的动力条件,另外,持续的水汽输送为此次暴雨过程提供了有利的水汽条件。  相似文献   

8.
本文利用常规气象观测资料和西宁多普勒雷达资料,对2010年6月6~7日青海出现的区域性大~暴雨天气的环流形势、水汽条件、上升运动、不稳定能量以及多普勒雷达回波特征进行了分析。  相似文献   

9.
利用常规观测资料、NCEP再分析资料以及卫星云图资料,对2019年5月3-5日西藏南部和东南部降水过程的环流背景、物理量场及其中尺度特征等进行了综合分析。结果表明:此次降水天气过程期间欧亚中高纬地区为三槽两脊型,孟湾风暴(法尼)登陆减弱后的低压(槽)和高、低空急流是此次降水过程的主要影响系统,低空西南急流为强降水提供了源源不断的水汽,高空急流为强降水提供了有利的动力抬升条件,低空西南风风速大小与降水强度有明显的关系。孟加拉湾特强气旋风暴"法尼"登陆后外围云系不断上高原,为降水天气提供了有利的水汽条件;水汽通量大值区向高原移动,不断地为降水区输送水汽;降水期间,强的上升中心为-1.6Pa·s~(-1),为降水天气提供了有利的上升运动。  相似文献   

10.
本文采用FNL1°×1°一日四次资料及Micaps地面高空观测资料,对2013年7月2日东北地区一次由东北冷涡引起的大范围持续性暴雨过程进行诊断分析,通过对东北冷涡的结构、动力条件、水汽收支和层结状况进行分析研究,结果表明此次暴雨过程中东北地区上空有深厚低压系统,东侧阻塞高压阻止其东移。层结不稳定,对流发展。低层辐合、高层辐散的上升运动,及充足的水汽,为此次暴雨过程提供有利条件。  相似文献   

11.
利用2017年7月25日至26日地面及高空观测资料,对2017年7月26日土右旗一次暴雨过程进行分析。结果表明:这次暴雨发生在500h Pa高空槽前西南气流里,暴雨区与切变线平行,降水在切变线到地面锋线之间。地面河套地区北部有低压系统存在,降水过程发生在负散度中心和负垂直速度中心的南侧、正涡度中心的西南侧,阴山迎风坡的地形抬升作用显著。  相似文献   

12.
实时天气系统的时空分布、各数值预报和多个物理量要素预报等都指示2017年5月11日夜间到12日白天,浙江省西部和北部地区有暴雨发生的可能,结果只有浙江省西南部出现了局地暴雨,而西北部地区出现了明显的暴雨空报。为了找出暴雨空报原因,回顾了当时的预报思路,并利用各种常规资料和NCEP再分析资料,对此次过程进行诊断分析,结果表明:(1) 500 h Pa西风槽东移并未如预报加深,而是分裂成南北两支;实际850 h Pa低涡切变、急流均明显比预报偏弱;大气可降水量实际偏弱;水汽辐合散度不及预报强;存在不稳定层结,但不稳定能量低,这是实况降水明显不及预报强的主要原因。(2)数值模式预报以及上级指导预报量级偏大,预报员主观订正能力有限,过分依赖模式预报和指导预报,而忽略了水汽和能量条件指标时间的一致性,是此次暴雨空报的关键原因。(3)预报员在实际预报工作中需增强主观判断能力,发现数值预报降水与实况偏差较大时,应及时结合上游的降水实况、卫星云图演变和雷达资料,对原先的预报做相应临近订正,可提高预报的服务效果。  相似文献   

13.
为了填补金华乃至浙江秋季降水研究空白,本文利用NCEP再分析资料和1971—2020年秋季实测降水资料,结合水汽通量及散度场,并基于拉格朗日法的轨迹模式HYSPLIT-4,对金华市50年来秋季异常降水年不同高度的水汽输送特征进行研究。结果表明:(1)金华秋季降水的水汽通道主要有4条,欧亚非大陆的陆上通道、西太平洋通道、孟加拉湾-南海通道以及局地水汽通道。(2)金华秋季降水的水汽输送在不同高度存在差异,典型旱年中低层以局地水汽输送为主,高层以孟加拉湾-南海和西太平洋的水汽输送为主;影响典型涝年的水汽输送在中低层上源自西太平洋,高层源自孟加拉湾-南海。(3)西太平洋和孟加拉湾-南海是导致金华秋季降水异常的关键水汽源区,其中典型涝年西太平洋的水汽贡献率较旱年增强12.36%,孟加拉湾-南海增强15.79%,并且异常水汽主要以西南气流的形式输入金华影响降水。  相似文献   

14.
受高空冷涡和低层暖湿气流共同影响,2017年7月5日~6日呼和浩特地区出现一次明显的降水过程,本文利用micaps资料、卫星图像资料、新一代降水雷达观测资料等,对本次中南部偏大的暴雨过程进行详细分析,得出:中低层的水汽充足,同时有西南急流不断输送补充水汽,850hPa的切变线影响呼和浩特地区,动力辐合与水汽同时配合,使6日08时前后降水持续偏大。地面场上存在气旋,有明显辐合,呼和浩特南部存在明显的地面辐合线,有利于降水的辐合加强,致使呼和浩特地区中南部降水偏大。  相似文献   

15.
针对2020年8月28日~29日青海省东北部一次大到暴雨天气过程,利用常规观测站资料、加密自动站资料、雷达资料、模式预报资料等分析造成此次天气过程的主要成因,结果表明:(1)此次降水过程范围广、强度强,暴雨降水落区集中,降水对流性质明显;(2)高低层配置有利于产生大到暴雨天气,500 hPa短波槽、700 hPa低涡、200 hPa高空急流为降水提供了有利的水汽条件和动力条件,低层偏东南气流输送水汽,中层西南暖湿气流输送孟加拉湾水汽,西南暖湿气流与冷空气交汇于青海省东北部造成此次大到暴雨天气;(3)中小尺度地面辐合线持续东移,为降水提供了触发机制;(4)降水大值区位于山谷之中,地形辐合对降水增幅作用明显。分析结果对今后预报类似大降水天气过程具有重要的参考意义。  相似文献   

16.
利用常规观测数据、卫星及新一代多普勒雷达资料,针对2017年8月2日-8月4日发生在赤峰地区的暴雨及大暴雨过程的天气形势、水汽来源及中尺度对流系统的特征进行了研究,得出以下结论:(1)此次暴雨是高低空系统相互配合的结果,大尺度环流形势为东高西低、北槽南涡,西太平洋副热带高压与西风带高压脊叠加形成高压坝,使西风槽东移缓慢;天气尺度影响包括低空低涡、切变线、低槽冷锋和低空急流等,地面影响系统主要是台风倒槽。(2)此次暴雨的水汽来源主要是来自南海、东海、黄海和西太平洋,低层水汽主要来自东海、黄海和西太平洋,偏东水汽贡献较大;而中高层水汽则主要来自南海。(3)从卫星云图以及雷达图像上明显看出此次降水分为两个阶段,分别是前期对流降水和后期的稳定性降水阶段。对流性降水阶段雷达表现为明显的分散的、块状回波;而稳定性降水则为均匀的片状回波,卫星云图表现与雷达图像一致。  相似文献   

17.
延吉机场气象台预报室在2020年春运保障专项学习时,把冬春降雪预报作为重点学习内容。回顾2007年3月4日04时到6日13时,延吉机场近几十年来出现的降水时间最长、降水量最大、降水相态变化较多的暴雪天气。利用常规气象观测资料、数值预报资料,从天气形势演变、影响系统发展、急流配置、能量条件、水汽条件和动力抬升条件等方面进行了综合分析,了解延吉地区的这次暴雪天气过程的成因。结果表明:这次强降雪天气过程是由高空南北槽合并与地面黄河倒槽共同作用产生的的结果,暴雪形成的动力机制是高层辐散与低层辐合相配置导致的强上升运动,以及中低层深厚的正涡度的产生和维持。水汽来源是由700 hpa偏南低空急流携带东海和南海两个源地的充沛水汽抵达东北地区。强降水落区与850 h Pa正涡度和200 h Pa正散度大值区相一致。上冷下暖的热力结构有利于中尺度不稳定能量的释放。  相似文献   

18.
基于降雨量观测资料和雷达监测资料,针对2012年7月25日呼和浩特地区暴雨天气过程,分析雷达产品影像的结构及发展演变特征,结果表明:带状暴雨落区位于西太副高外围强盛西南暖湿气流和弱冷空气交汇处;带状云系中不断生成中-β云团,强回波单体的生消形势类似"列车效应",为暴雨天气过程提供了丰沛的水汽条件和能量抬升条件。  相似文献   

19.
利用MICPAS系统的实况资料和欧洲中心、日本传真图、NCEP等数值预报产品,结合雷达回波图,对2012年2月23日丽水地区出现的暴雨过程进行环境场和物理量场分析,发现:持续而强劲的西南暖湿气流为此次强降水提供了充沛的水汽条件,而高空层结不稳定和低层垂直上升运动比较强烈为强降水提供了有利的能量条件,北方南下的冷空气是此次暴雨的触发机制,热力、动力、水汽条件在降水前都有较好的配置。  相似文献   

20.
利用NCEP每日4次再分析资料,计算预报业务中常用的比湿、散度、兹se、A指数等物理量,对2011年梅汛期末场暴雨进行诊断分析。结果表明:在此次降水过程,暴雨落区与850 hPa切变位置对应较好,主要集中在西南急流的左前方,850 hPa辐合条件好的地区;暴雨带与低层水汽通量辐合区走向基本一致,暴雨带基本都在辐合带内,但其暴雨中心与辐合中心位置有时并不都一致;暴雨落区对应500、700、850 hPa高湿区(>90%区域)重叠区中低层风场辐合较好的区域较好;暴雨带处(850 hPa兹se锋区南侧边缘,但是兹se锋区梯度的变化与暴雨强度、范围变化对应并不一致;暴雨带处AI指数高值带内偏北侧一端,A指数增大,暴雨强度也增大,在暴雨预报中有指示意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号