首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用函数方法证明不等式 ,常常能够方便地给出证明 .用函数方法证明不等式的关键是结合不等式的结构特征构造适当的函数 ,以便于利用这一函数的有关性质证明所给的不等式 .例 1 若a >b>0 ,m >0 .求证 :ab >a +mb+m.证明 令 f(x) =a+xb +x.由a>b可设a =b+c(c >0 ) ,则f(x) =b+x +cb +x =1+cb +x.当x∈ (0 ,+∞ )时 ,f(x)为减函数 .∵ m >0 ,∴ f(m) <f(0 ) .即 ab >a+mb+m.注 用函数方法证明不等式 ,往往要利用所构造函数的单调性 .例 2 设a、b、c∈R .证明 :a2 +ac+c2 +3b(a+b+…  相似文献   

2.
擂台题 (5 4 ) :证明或否定若a、b、c为△ABC的三边长 ,实数λ≥ 2 ,则(b+c-a) λbλ+cλ +(c+a -b) λcλ+aλ +(a +b -c) λaλ+bλ ≥ 32①引理 若m、n∈R+ ,实数 p≥ 1 ,则(m +n2 ) p≤ mp+np2 ②证明  (1 )当 p =1时 ,②式等号成立 ,(2 )当 p >1时 ,令 f(x) =xp(x >0 ) ,这时 ,f′(x) =pxp- 1,f″(x) =p(p -1 )xp - 2 >0 ,所以 f(x)是 (0 ,+∞ )上的凹函数。因为m、n∈R+ ,由琴生不等式知f(m +n2 )≤ f(m) +f(n)2 ,即有 (m +n2 ) p≤ mp+np2 ,当且仅当m =n…  相似文献   

3.
构造函数法是证不等式的一种重要方法 ,本文谈谈构造函数法证不等式的几种思考途径 .途径一 利用函数的单调性构造一个函数 ,使原不等式 (或经等价变形后 )的左右两边是这个函数在某一个单调区间上的两个值 ,就可以利用函数的单调性证明不等式 .例 1 已知a、b、c∈R ,且a b c =1,求证 :abc 1abc≥ 2 712 7.证明 令 f(x) =x 1x ,取 0 <x1<x2 <1,则f(x2 ) - f(x1) =(x2 -x1) 1x2 - 1x1=(x2 -x1) 1- 1x1x2 <0 ,所以 f(x)在 (0 ,1)上为减函数 .又 0 <abc≤ a b c33=12 7,∴f(abc) ≥ f 12 …  相似文献   

4.
在闭区间上的二次函数的绝对值不等式的证明有一个通法 :将二次函数的系数用闭区间上的三个函数值 (一般用区间端点和中点的函数值 )来表示 ,然后借助于绝对值不等式来解决 .例 1 设a、b、c∈R ,f(x) =ax2 +bx +c(a≠ 0 ) .若 | f( 0 ) |≤ 1,|f( 1) |≤ 1,|f( - 1) |≤ 1,试证 :对任何x∈ [- 1,1] ,都有 |f(x) |≤ 54 .证明 :因f( 0 ) =c,f( 1) =a +b+c,f( - 1) =a-b +c,故解得a =f( 1) + f( - 1)2 - f( 0 ) ,b =f( 1) - f( - 1)2 ,c=f( 0 ) .∵  |x|≤ 1∴  | f(x) | =|ax2 +bx +c|=f( …  相似文献   

5.
定理 二次函数 y =ax2 bx c的值域是[0 , ∞ )的充要条件是a>0且b2 - 4ac=0 .证明 因为 y =ax2 bx c =a(x b2a) 2 4ac-b24a ,x∈R ,所以二次函数y=ax2 bx c的值域是 [0 , ∞ ) y的最小值是 0 ,无最大值 a>0且b2 - 4ac=0 .下面举例说明定理的应用 .例 1 已知 f(x) =2x2 bx cx2 1(b <0 )的值域为[1,3] ,求实数b,c的值 .解 f(x)的定义域为R .由 1≤2x2 bx cx2 1≤ 3,得x2 bx c- 1≥0且x2 -bx 3-c≥ 0 .所以 f(x)的值域为 [1,3] y1=x2 bx c- 1和 …  相似文献   

6.
20 0 2年高考有一道数学题为 :已知a >0 ,函数 f(x) =ax -bx2 .(1)当b >0时 ,若对任意x∈R ,都有f(x) ≤ 1,证明 :a≤ 2b ;(2 )当b >1时 ,证明 :对任意x∈ [0 ,1],|f(x)|≤ 1的充要条件是b- 1≤a≤ 2 b ;(3)当 0 <b≤ 1时 ,讨论 :对任意x∈[0 ,1],|f(x)|≤ 1的充要条件 .绝大多数考生做此题时无所适从 ,根本不知从何下手 ,参考答案给出的方法比较抽象 ,难于理解 ,笔者有一解法 ,介绍如下 :解  (1)由已知ax -bx2 ≤ 1,∴ bx2 -ax +1≥ 0 .∵ x∈R ,b >0 ,∴ Δ =a2 - 4b≤ 0 ,∴ a≤ 2 b .…  相似文献   

7.
不等式中恒成立问题是各类考试中的常见题型,其解法灵活.那么,如何求解呢?下面通过例题加以说明.一、分离参数,转化为求函数的最值例1 设f(x)是定义在(-∞,3]上的减函数,已知f(a2-sinx)≤f(a+1+cos2x)对于x∈R恒成立,求实数a的取值范围.分析:应在定义域和增减性的条件下去掉函数符号f,使a从f中解脱出来.解:原不等式等价于a+1+cos2x≤a2-sinx≤3对x∈R恒成立,即        a2≤3+sinx,a2-a≥1+cos2x+sinx①②对x∈R恒成立.令t(x)=3+sinx,则①对x∈R恒成令s(x)=1+cos2x…  相似文献   

8.
向量不仅是解决立体几何、解析几何的有力工具 ,也是解决代数和三角问题的有力工具 ,它可使许多代数和三角问题的求解过程变得轻松 ,生动 ,给人以数学美的享受 .它为解决中学数学问题开避了一条新的途径 .一、比较大小例 1 已知a ,b∈R ,0 <x<1,试比较a2x + b21-x 与 (a +b) 2 的大小 .解 设向量m=ax,b1-x ,n=(x ,1-x) .由 (m·n) 2 ≤|m|2 |n|2 ,得(a +b) 2=ax·x + b1-x· 1-x2≤ a2x + b21-x x+ (1-x)=a2x + b21-x.例 2  (2 0 0 0年河北省高中数学竞赛试题 )已知a ,b∈R ,m ,n∈R+…  相似文献   

9.
根据欲证不等式的某些特点 ,引入适当的函数、数列、方程、图形等 .并利用它们的性质证明不等式的方法 ,称为构造法 .以下分别说明几种常见的构造对象 .一、二次函数对二次函数 f(x) =ax2 +bx+c(α≤x≤ β) ,若a >0 ,则 f(x) ≥ 0 Δ≤ 0 ;-b2a∈(α ,β)时max{ f(α) ,f( β) }≥ f(x) ≥f -b2a ;-b2a (α ,β)时 ,f(x)在 f(α)与f( β)之间 .利用f(x) ≥ 0 Δ ≤ 0证明不等式的方法也称为判别式法 .它的用法是 :当欲证之不等式呈现B2 ≤ ( ≥ )AC这样的与判别式类似的形式时 ,可考虑构造二次函数 ;…  相似文献   

10.
1 求证 :sin2 0 0 3° >12 ·cos2 0 0 2°。  (不要使用计算器等工具。)2 试求出两条抛物线 y2 =2 5 -6x与x2 =2 5 -8y的所有的交点的坐标。 (不要使用一元四次方程求根公式。)3 试求出所有的有序正整数对 (a ,b) (a≤b) ,使得a能整除b2 +b +1 ,且b能整除a2 +a +1。4 试求出所有的函数 f :R -{0 ,1 }→R -{0 },使得对于任何的满足“x·f(y) ,y -x∈R -{0 ,1 }”的x∈R -{0 },y∈R -{0 ,1 },都有  f(x·f(y) ) =(1 -y)·f(y -x)。5 试求出所有的函数 f :R→R ,使得对于任何的x、y∈…  相似文献   

11.
对于某些不等式的证明 ,若认真分析题目的条件和结论 ,构造适当的向量 ,然后借助向量的数量积的性质|m·n|≤|m|·|n| ,往往可以使某些不等式得到证明 .例 1 已知a ,b∈R ,求证 :a +b22 ≤ a2 +b22 .证明 设m =(a ,b) ,n =( 1,1) .由 |m·n|2 ≤|m|2 ·|n|2 ,得(a +b) 2 ≤ (a2 +b2 )· 2 ,∴ a +b22 ≤ a2 +b22 .例 2 设a ,b ,c,d∈R .证明 :ac+bd≤ a2 +b2 · c2 +d2 .证明 设m =(a ,b) ,n =(c,d) .由|m·n|≤|m|·|n| ,得|ca+bd|≤ a2 +b2 ·c2 +d2 …  相似文献   

12.
众所周知 ,若a≥b且a≤b ,则a=b .利用这一结论常能解决一些数学问题 .下面是一道 2 0 0 2年全国联赛试题 :已知 f(x)是定义在R上的函数 ,f( 1 ) =1 ,且对任意x∈R都有f(x+ 5 )≥ f(x) + 5 ,f(x+ 1 )≤ f(x) + 1 .若 g(x) =f(x) + 1 -x ,则g( 2 0 0 2 ) =.解 由 g(x) =f(x) + 1 -x ,得g(x+ 5 ) =f(x + 5 ) + 1 -x-5=f(x + 5 ) -x-4≥ f(x) + 5 -x -4=f(x) + 1 -x =g(x) ,g(x + 1 ) =f(x+ 1 ) + 1 -x -1=f(x+ 1 ) -x≤f(x) + 1 -x =g(x) .∴g(x) ≤g(x+ 5 )≤ g(x + 4)…  相似文献   

13.
函数是贯穿于初等数学的一根主线 ,函数思想是数学思想方法的重要组成部分 .函数思想的实质是剔除问题的非数学特征 ,用联系变化的观点提出数学对象 ,抽象其数量特征 ,建立函数关系 .下列举例说明函数思想在解题中的重要性和广泛的应用性 .例 1 设a、b、c∈R ,且a2 ≤ 1 ,b2 ≤ 1 ,c2 ≤ 1 .求证 :ab bc ca 1≥ 0证明 :构造一次函数f(x) =(a c)x ca 1若a c=0 ,由于-1 ≤ac≤ 1 ,有ac 1≥ 0 .即f(x) ≥ 0若a c≠ 0 ,f(1 ) =a c ca 1=(1 a) (1 c) ≥ 0 .f(-1 ) =-(a c) ca 1 =(1 -a)…  相似文献   

14.
下面,通过一些具体例子说明函数思想在解题中的运用.  一、比较大小例1 试比较|a+b|1+|a+b|与|a|+|b|1+|a|+|b|的大小.解:对于函数f(x)=x1+x=1-11+x,易知当x∈(-1,+∞)时,其为增函数.而0≤|a+b|≤|a|+|b|,故|a+b|1+|a+b|≤|a|+|b|1+|a|+|b|.注:通常可以利用函数的单调性解决比较大小的问题.二、证明不等式例2 已知实数a、b、c∈(0,1),证明:不等式a(1-b)+b(1-c)+c(1-a)<1总成立.证明:欲证不等式等价于(1-b-c)a+(1-c)(b-1)<0.记f(a)=(1-b-c)a+(1-c)(b-1),故欲证原不等式成立,只需证明a∈…  相似文献   

15.
1 已知x2 y2 +x2 +y2 -4xy -8x -8y + 2 5=0 ,求x、y的值 .2 已知a、b、c都是正实数 ,且a >b.求证 :a2 +c2 -b2 +c2 <a-b.3 已知 2 5a -5b +c =0 (a≠ 0 ) .求证 :b2 ≥ 4ac.4 已知△ABC的三边a、b、c满足不等式a+b +c + 1 7≤ 4a -8+ 6b-3+ 8c-1 ,试判定△ABC的形状 .5 若x1、x2 是方程x2 + 5x -7=0的两个根 ,则 (2x21+ 1 3x1-1 9) (2x22 + 1 3x2 -1 9)的值是.参考答案1 已知等式可变形为 (xy -3) 2 + (x +y) 2-8(x +y) + 1 6 =0 ,即 (xy -3) 2 + (x +y -4 ) 2=0 .∴ x…  相似文献   

16.
有的文献证明了对任何x∈R,f(x)>0.本文获得定理 设x∈R,则f(x)=x4 x2 x 1在x=x0=-14 3-564 56144 3-564-56144=-060582958…处,取得最小值f(x0)=516[(x0 1)2 2]=067355322…此定理可用微分法证明,同时得知x0是方程f’(x)=0的惟一实根.下面用不等式(A2 B2)(1 a2)≥(A aB)2(=|aA=B)来证明.对f(x)进行”双配方”,应用该不等式,有f(x)=(x2 12x)2 34(x 23)2 23=(x2 12x)2 (32x 33)2 23≥11 a2[x2 (12 32a)x 33a]2 23.设3a=b,13<b<3,则x2 (12 b2)x b3≥14[4b3-(12 b2)2]=(3b-1)(3-b)48>0…  相似文献   

17.
问题 :对于函数 f(x) ,若存在x0 ∈R ,使f(x0 ) =x0 成立 ,则称x0 为 f(x)的不动点 .如果函数 f(x) =x2 +abx-c(b,c∈N)有且只有两个不动点 0 ,2 ,且f( -2 ) <-12 .( 1 )求函数 f(x)的解析式 ;( 2 )已知各项不为零的数列 {an}满足4Sn·f 1an =1 ,其中Sn 是数列 {an}的前n项和 ,求数列通项an.( 3 )如果数列 {an}满足a1 =4,an+1 =f(an) ,求证 :当n≥ 2时 ,恒有an <3成立 .一、分析与评述( 1 )分析 :由f( 0 ) =0 ,可得a=0 ,①又由 f( 2 ) =2可得 ,2b =c+2 ,②再由 f( -2 ) <-12 可得 ,2…  相似文献   

18.
二维柯西不等式 :设a、b、c、d∈R ,则有(a2 b2 ) (c2 d2 )≥ (ac bd) 2 .当且仅当 ac =bd 时 ,不等式取等号 .1 推证几个重要结论命题 1 椭圆 x2a2 y2b2 =1与直线Ax By C =0有公共点的充要条件是A2 a2 B2 b2 ≥C2 .证明 由柯西不等式得(Ax By) 2 =Aa· xa Bb· yb2≤A2 a2 B2 b2 x2a2 y2b2 .若 (x0 ,y0 )是已知椭圆和直线的公共点 ,则满足x20a2 y20b2 =1、Ax0 By0 C =0 ,则上述不等式左边为C2 ,右边为A2 a2 B2 b2 ,充分性得证 .若 (x ,y)是直线上…  相似文献   

19.
文[1] 介绍了涉及三角形高线的不等式 :r(5R-r)R2 ≤ h2 abc h2 bca h2 cab ≤ (R r) 2R2 ①文[2 ] 在①的基础上 ,建立的如下不等式 :bch2 a cah2 b abh2 c≥ 4②文[3 ] 建立了比②更强的如下不等式 :bct2 a cat2 b abt2 c≥ 4③  本文提出如下涉及ha,hb,hc 的不等式链 :   bcr2 a≥ 2Rr = bch2 a≥ Rr 2= bct2 a≥ bcrbrc ≥4, bcm2 a④而这一不等式④只须巧用三角形中诸元素的代数变换体系f(ra,rb,rc) =f(x,y,z)简证之 .1 三角形诸元素…  相似文献   

20.
选择题1 下列各式 :( 1) 2 0 0 1 {x|x≤ 2 0 0 3};( 2 ) 2 0 0 3∈ {x|x <2 0 0 3};( 3) {2 0 0 3} {x|x≤ 20 0 3};( 4)Φ∈ {x|x <2 0 0 3},其中正确式子的个数为 (   )A 1  B 2  C 3  D 42 满足f(π +x) =- f(x) ,f( -x) =f(x)的函数 f(x)可能是 (   )A sinx B sin x2  C cos2x D cosx3 若函数 f(x) =ax(a >0 ,a≠ 1)为减函数 ,那么 g(x) =log1a1x - 1的图象是 (   )A       BC       D4 如果a·b =a·c且a≠ 0 ,那么 (   )A b =…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号