首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
我们知道,asinx+bcosx=a2+b2sin(x+φ),其中ab≠0,tanφ=ab,这个公式叫做辅助角公式.该公式可将异名三角函数化为同名三角函数,在解题中具有广泛的应用.现举例说明,以引起同学们的重视.一、求最值例1当-2π≤x≤2π时,函数f(x)=sinx+3cosx的()(A)最大值是1,最小值是-1(B)最大值是1,最小值是-21(C)最大值是2,最小值是-2(D)解最大值是2,最小值是-1f(x)=sinx+3cosx=2sinx+3π,因为-2π≤x≤2π,所以-6π≤x+π3≤65π,所以-21≤sinx+3π≤1,所以-1≤f(x)≤2·故选(D).例2求函数y=sin2+2sinx·cosx+3cos2x的最小值,并写出使函数y取最小值的解x…  相似文献   

2.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

3.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

4.
近年来,各省市中考及初中数学竞赛中,经常有最值问题出现,现举例说明·一、利用判别式求最值例1(2004年全国初中数学竞赛试题)实数x、y、z满足x+y+z=5①,xy+yz+zx=3②,则z的最大值是·分析:消去一未知数,使之变为z为参数的一元二次方程·解:由①得y=5-x-z③把③代入②得x(5-x-z)+z(5-x-z)+zx=3整理得:x2+(z-5)x+z2-5z+3=0因为x为实数,所以Δ≥0所以(z-5)2-4(z2-5z+3)≥0所以(3z-13)(z+1)≤0所以-1≤z≤133·二、利用非负数性质求最值例2多项式P=2x2-4xy+5y2-12y+13的最小值为·分析:将多项式配方,使之化为几个非负数之和·解:P=2x2-4xy+5y2…  相似文献   

5.
一、构造方程例1已知a,b缀R,且a3+b3=2,求a+b的最大值.解设a+b=t,则a3+b3=(a+b)(a2-ab+b2)=t(t2-3ab)=2,即ab=t3-23t,所以a,b是方程x2-tx+t3-23t=0的两实根.故驻=t2-4×t3-23t≥0.解得0相似文献   

6.
线性规划是研究线性目标函数在线性约束条件下取最大值或最小值的问题 ,简单线性规划则是新课程标准下高中教材的必学内容 ,主要介绍两个变量的线性规划问题 ,其最优解可通过图解法求出 .这里先通过一个例子来了解简单线性规划图解法的基本思想方法 ,从而发现理论方法与实际操作的偏差 ,进而给简单线性规划图解法添加几点补注供大家参考 .例 1 求 z =5 x + 6y的最大值 ;其中 x,y满足约束条件x + y≤ 484x + 5 y≤ 2 0 03 x + 10 y≤ 3 0 0x≥ 0 ,y≥ 0解 :作出可行域如图 1,作直线 l:5 x + 6y= 0 ,把直线 l进行平移可知 ,当直线 l过点 A时…  相似文献   

7.
观察下面三个问题 :( 1 )设a、b、c为△ABC的三边 .求证 :a2 b(a -b) +b2 c(b -c) +c2 a(c-a)≥ 0 .①(第 2 4届IMO)( 2 )若x、y、z∈R+,则x·x +yx +z+y·y +zy +x+z·z+xz+y≥x +y +z.②( 1 992 ,国际“友谊杯”数学邀请赛 )( 3)设x、y、z∈R+,求证 :x2 ·y +zy +x+y2 ·z+xz+y+z2 ·x +yx +z≥xy +yz+zx .③这三个不等式均不难证明 ,此处从略 .今将揭示他们之间隐含的内在联系 .1 .建立对应关系 ,揭示①可转化为②众所周知 ,对于任意△ABC的三边a、b、c,总可找到这样的正数x、y、z,使得a =y +z,b =z+x ,c =x +y .于是 ,式①化为(y+z…  相似文献   

8.
例 1 已知x >0 ,求函数 y =2x2 +3x的值域 .错解 ∵y=2x2 +3x=2x2 +1x +2x≥ 33 2x2 ·1x· 3x=3 3 6.故所求函数的值域为 [3 3 6,+∞ ) .剖析 由于方程 2x2 =1x =2x 无解 ,即等号不能成立 ,故求解错误 .正解 y=2x2 +3x=2x2 +32x+32x≥ 33 2x2 · 32x· 32x=323 3 6.故所求函数值域为 323 3 6,+∞ .例 2 已知 1≤a+b≤ 5 ,-1≤a-b≤ 3 ,求 3a -2b的取值范围 .错解 ∵ 1≤a+b≤ 5 ,①-1≤a-b≤ 3 ,②∴ 0 ≤ (a +b) +(a-b)≤ 8,∴ 0≤a≤ 4,③∴ 0 ≤ 3a≤ 12 ,又∵ 1≤a+b≤ 5 ,   -3≤-a +b≤ 1,∴ -2 ≤ (a +b) +( -a+b)≤ 6,∴ -…  相似文献   

9.
“简单线性规划”是高中数学新增内容,在高考中占有较重要的地位,考察线性规划的直接应用或间接应用,从近几年高考命题的情况分析,在高考复习中,有必要在教材内容的基础上,作出适当引申.其一是约束条件不限于一次不等式,可以是二元二次不等式或其它形式;其二是利用目标函数的几何意义解题,而且目标函数可以是非线性的.1联系直线在y轴或x轴上的截距解题例1已知实数x,y满足2│x-1│-y=0,求z=x+2y的最小值.解它的可行域的边界为一折线y=2│x-1│,目标函数z=x+2y的值就是直线x=-2y+z在x轴上的截距的值;令x+2y=0,它表示的直线为l,平移直线l到l′使l′过点M(1,0),此时,目标函数z取得最小值,zmin=1.例2已知实数x,y满足x2+y2=2x-2y+1≤0,求z=x-y-1的最大值和最小值.解它的可行域的边界是一个圆(x+1)2+(y-1)2≤1,(是非线性的可行域)目标函数z的值就是当直线y=x-z-1与可行域有公共点时,在y轴上截距的相反数再减1,因而截距最小时,z最大;截距最大时,z最小.图1令x-y=0,表示直线l:y=x.平移直线l到l′和l″,使l′和l″与圆(x+1)2+(y...  相似文献   

10.
2005年湖南省数学竞赛压轴题为:若正数a,b,c满足b+a c=a+b c-ca+b,求证:a+b c≥174-1.这是从等式开始的解证多元分式不等式的问题,较新颖.考生的得分率很低,而且标准答案也不易,因而值得探讨其典型解证方法.证法1(标准答案)由条件有a+b c=ca+b+b+a c,令a+b=x,b+c=y,c+a=z,则a=x+z2-y,b=x+y2-z,c=z+y-x2,从而原式变为x+2yz-z=y+z-x2x=x+2 zy-y,即x+z y=y+x z+z+y x-1≥xz+zy+1≥x 4+z y+1.令x+z y=t,则t≥4t+1,可得t≥1+2 17或t≤1-2 17(不合要求,舍去),故a+b c=x+2 yz-z=2t-21≥17-14.证法2由条件有a+b c=b+a c+ca+b=ab+a2 ac+bc+c2 ac≥(a+…  相似文献   

11.
一、四大考点1.线性规划例1当x,y满足不等式组2≤x≤4,y≥3,x+y≤8时,目标函数k=3x-2y的最大值为,最小值为.解析这是一类考查线性规划的简单应用题.由线性规划的原理可知,解这类题的方法是:先根据约束条件画出可行域,然后把可行域中满足各条件的边界交点(当交点是整数时)的坐标代入目标函数,再将所得的值进行比较,即可求出最大值和最小值.由条件2≤x≤4,y≥3,x+y≤8得可行域(如图1中阴影部分),从图可知有四个交点A(2,6),B(2,3),C(4,4),D(4,3).分别将这4点的坐标代入目标函数可得kA=3×2-2×6=-6;kB=3×2-2×3=0;kC=3×4-2×4=4;kD=3×4-…  相似文献   

12.
一、化简代入技巧例1先化简,再求值。ba-b·a3+ab2-2a2bb3÷b2-a2ab+b2,其中a=23,b=-3。解:待求式=ba-b·a(a-b)2b3·b(b-a)=-ab=-23÷(-3)=29。二、求值代入技巧例2已知a(a-2)-(a2-2b)=-4,则a2+b22-ab=。解:∵a(a-2)-(a2-2b)=-4,∴a2-2a-a2+2b=-4,∴-2(a-b)=-4,a-b=2,故a2+b22-ab=(a-b)22=222=2。三、换元代入技巧例3如果x:y:z=1:3:5,那么x+3y-zx-3y+z=。23,则。解:设x=k,y=3k,z=5k,则x+3y-zx-3y+z=k+9k-5kk-9k+5k=5k-3k=-53。四、和积代入技巧例4已知x=樤3+樤2,y=樤3-樤2,试求2xyx2-y2+xx+y-yy-x的值。解:由题设得,x+y=2樤3,x-y=2樤2,xy=1…  相似文献   

13.
题目(2010高考山东卷理科) 设变量x,y满足不等式组x-y+2≥0 x-5y+10≤0, x+y-8≤0则目标函数z=3x-4y的最大值和最小值分别为( )  相似文献   

14.
笔者在一些文章中,看到了对形如y=x十p/x(p>0)的最小值问题的特例的求解,方法巧妙.经过推敲,笔者发现此类问题可以有一般的解决方法和一般的结果,即只要p>0,这种形式的函数的最小值总能求出.在此将我们的一点体会和盘托出,请同行们指教.对于可直接利用基不不等式a~2 b~2≥2ab或a b≥2(ab)~1/(ab)求解的最小值问题.本文将略去.定理1 函数y=x p/x(0相似文献   

15.
1 问题提出我们经常看到这样一道题:已知a >0 ,b >0 ,且a b =1 ,求(a 1a) 2 (b 1b) 2 的最小值.该题通常这样求解:(a 1a) 2 (b 1b) 2 =a2 b2 1a2 1b2 4=(a b) 2 -2ab 1a2 1b2 4=5 -2ab 1a2 1b2 ≥5 -2 ( a b2 ) 2 2ab=92 2ab≥92 2( a b2 ) 2=2 52 .当且仅当a =b时取等号.作为上题的推广,我们自然会想到问题1 :已知x >0 ,y >0 ,且x y =1 ,求函数f1(x ,y) =(x 1x) 3 ( y 1y) 3的最小值.对于问题1 ,我们同样可以如下求解:由题设条件可求得0 相似文献   

16.
本文推广了如下两个关于对称式的不等式 :x2 yz +y2 zx +z2 xy ≥x2 +y2 +z2   (x ,y ,z∈R ,x≥y≥z >0 ) ,ab(a +b) +bc(b +c) +ca(c +a)≤ 32 (a +b) (b +c) (c +a) ,(a ,b ,c∈R+ )  相似文献   

17.
安振平先生在《中学数学月刊》2 0 0 3年第 7期《一个三角形中的不等式》一文中给出了不等式 :命题 1 在△ ABC中 ,三边长 a,b,c,则a - b ca b- c ab c - a bc ≤ 3. ( 1 )现在给出 ( 1 )左式的下界 :命题 2 在△ ABC中 ,三边长为 a,b,c,则 a - b ca b- c ab c - a bc >2 . ( 2 )证明 设2 x =a - b c,2 y =b- c a,2 z =c- a b则a =x y,b =y z,c=z x,且 x,y,z >0 .∴ a - b ca b - c ab c - a bc=2 xx y 2 yy z 2 zz x= 2 ( xx y yy z zz x)>2 ( xx y yy z zz x)>2 ( xx y z yy z x zz x y) =2 .这个…  相似文献   

18.
面对含二元、三元 ,甚至多于三元未知问题时往往会令我们束手无策 ,但方程思想为我们指明了一条光明大道 .【例 1】 已知x ,y ,z∈R ,x+y +z=π ,x2 +y2 +z2 =π22 ,求证0 ≤x≤2π3 ,0 ≤y≤ 23 π ,0 ≤z≤ 23 π分析 :x ,y ,z为三元尽管具有对称性但让我们无从下手 .怎样才能减少变元从而化归为我们所熟悉的问题呢 ?且看方程解 :由题知 y+z =π-x ①y2 +z2 =π22 -x2 ②①2 -② y·z =x2 -πx+ π24= (x -π2 ) 2 ③由①③可得y·z是方程t2 -(π-x)t + (x-π2 ) 2 =0的两实数根 .∴Δ =(π -x) 2 -4 (x -π2 ) 2 ≥ 0 x· ( 3x-2π)…  相似文献   

19.
学习了相反数和倒数的有关知识后,不难发现关于相反数和倒数具有如下性质: 1.如果a、b互为相反数,那么a+b=0; 2.如果a、b互为倒数,那么ab=1, 解答某些与相反数或倒数有关的问题时,应注意灵活巧用这两个性质. 例1 若a与b互为倒数,x与y互为相反数,则-2ab+2x+2y的值是___.(1998年成都市初一数学竞赛试题) 解:由a与b互为倒数,x与y互为相反数,得 ab=1,x+y=0. 原式=-2ab+2(x+y) =-2·1+2·0=-2. 例2 已知a与-b互为相反数,那么  相似文献   

20.
一、随意变形例 1.函数 y=x+ 3· x- 3中 ,自变量 x的取值范围是。 (2 0 0 2年全国重点名校中考模拟题 )错解 :∵ y + x+ 3· x- 3=(x+ 3) (x- 3) =x2 - 9,∴ x2 - 9≥ 0 ,解之得 x≥ 3或 x≤ - 3。剖析 :因为变形后的函数 y=x2 - 9与变形前的函数 y=x+ 3· x- 3,它们的自变量取值范围不同 ,故出现错解。正解 :要使函数有意义 ,必须x+ 3≥ 0 ,x- 3≥ 0 ;  解之得 x≥ - 3,x≥ 3。∴自变量 x的取值范围是 x≥ 3.二、随意约分例 2 .函数 y=x2 + x- 2x2 - x- 6 中 ,自变量 x的取值范围是。 (2 0 0 2年山东省烟台市中考模拟题 )错解 :因为 y=(x…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号