首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Advances in online geospatial technologies (GST) have expanded access to K-12 classrooms which has implications for the support teachers require to effectively integrate GSTs to promote learning. Previous studies have shown the impact of GST-integrated lessons on student engagement, spatial thinking skills, and/or content knowledge; however, most of these studies have been small in scope and scale and frequently focus on the affordances of the technology, without addressing the context of the implementation and student characteristics for whom GST is most impactful. We attempt to address some of these gaps. Our program scaled an effective GST-focused professional learning and development program to a national audience through a facilitator development model. This paper explores the student characteristics and lesson factors that resulted in student interest in science and technology and careers in those fields. After teaching a Geospatial Inquiry lesson created during a teacher workshop, teachers (n = 82) submitted the lessons and surveys on the implementation of Geospatial Inquiry lessons. The implementation surveys and lessons were scored for alignment to the principles of high-quality Geospatial Inquiry. Students (n = 1924) completed a post-lesson retrospective survey and indicated the extent to which their perceptions and attitudes toward science and technology changed because of the lesson. Results indicate that teacher GST performance is associated with increases in student outcomes. Students with previous exposure to science activities were more likely to have increased interest and excitement in science and careers in science but decreased interest in technology careers. Students who had previous exposure to technology activities had increased interest and excitement in technology and careers in technology but decreased interest in science careers. Geospatial Inquiry lessons also had a significant impact on students who are traditionally underrepresented in STEM fields. After participating in the lessons, students who identify as female reported higher engagement and interest in science and higher interest in science careers. Students who identified as Black or Hispanic also reported higher interest and excitement in science and technology, and students who identified as Black reported marginally higher interest in science careers.  相似文献   

3.
We describe the development of the Measure of Affect in Science and Technology (MAST), and study its usefulness for measuring science affect in middle school students via both classical and Rasch measurement perspectives. We then proceed to utilize the measurement structure of the MAST to understand how middle school students at varying levels of affect express their interest and attitudes toward science and technology and gender differences in how students express their affect. We found that affect in science and technology comprises a main dimension, science interest, and four peripheral dimensions: interest in careers in science and technology, attitudes toward science, and interest in attending science class. Of these, careers in science and technology carry the highest affective demand. While males showed higher levels of personal and situational interest in science, a greater interest in careers in science and technology was the biggest contributor to males’ higher affect toward science and technology. We argue that whether the MAST is used as a measure of a single construct or multiple subconstructs depends upon specific research or evaluation goals; however, both uses of the MAST yield measures which produce valid inferences for student affect.  相似文献   

4.
STEM education faces an interesting conundrum. Western countries have implemented constructivist inspired student centred practices which are argued to be more engaging and relevant to student learning than the traditional, didactic approaches. However, student interest in pursuing careers in STEM have fallen or stagnated. In contrast, students in many developing countries in which teaching is still somewhat didactic and teacher centred are more disposed to STEM related careers than their western counterparts. Clearly factors are at work which impact the way students value science and mathematics. This review draws on three components that act as determinants of science education in three different countries – Australia, India and Malaysia. We explore how national priorities and educational philosophy impacts educational practices as well as teacher beliefs and the need for suitable professional development. Socio-economic conditions for science education that are fundamental for developing countries in adopting constructivist educational models are analysed. It is identified that in order to reduce structural dissimilarities among countries that cause fragmentation of scientific knowledge, for Malaysia constructivist science education through English medium without losing the spirit of Malaysian culture and Malay language is essential while India need to adopt constructivist quality indicators in education. While adopting international English education, and reducing dominance of impact evaluation, India and Malaysia need to prevent losing their cultural and social capital vigour. Furthermore the paper argues that Australia might need to question the efficacy of current models that fail to engage students’ long term interest in STEM related careers. Australian and Malaysian science teachers must be capable of changing the personal biographies of learners for developing scientific conceptual information. In addition both Malaysia and Australia need to provide opportunities for access to different curricular programmes of knowledge based constructivist learning for different levels of learner competencies.  相似文献   

5.
The need for students to learn science, technology, engineering, and mathematics (STEM) has increased steadily, while student motivation in this area continues to fall behind. We investigated the effects of science utility value intervention in increasing the science motivation (i.e., interest in science, appreciation of the role of science in future careers, and intention to engage in science-related activities) of Korean 5th and 6th graders. The usefulness of science for attaining the personal and communal goals inherent to various non-STEM careers was emphasized and internalized through classroom activities including postcard writing. At the end of the semester, students in the experimental group (n = 219) perceived greater personal and communal utility in science than those from the control group (n = 197). This enhanced perception of science utility led to greater interest, a higher likelihood of cognitively connecting science to future careers, and the willingness to engage in scientific activities.  相似文献   

6.
Students’ science-related career expectations are important for predicting their future science, technology, engineering, and mathematics (STEM)-related educational and occupational attainments. This study examines the degree to which standards-based external examinations are associated with a student’s propensity for pursuing science-related professional occupations. The science-related fields included in the analysis are mathematics, physical and life science, and engineering/computing. Three-level hierarchical generalized linear models are employed to analyse international survey and student achievement data from the Programme for International Student Assessment (PISA). The analyses show that students in national education systems that require standards-based external examinations have lower expectations for science-related professional careers than students in the systems that do not use such examinations. This negative association remained constant by gender as well as across levels of science performance. From an educational policy point of view, the results suggest the negative consequence of standards-based external exams in fostering students’ interests in pursuing science-related careers.  相似文献   

7.
Because the importance of science, technology, engineering and mathematics (STEM) education continues to be recognised around the world, we developed and validated an instrument to assess the learning environment and student attitudes in STEM classrooms, with a specific focus on engineering and technology (E&T) activities in primary schools. When a four-scale instrument assessing classroom cooperation and involvement and student enjoyment and career interest was administered to 1095 grade 4–7 students in 36 classes in 10 schools, data analyses supported its factorial validity and reliability. When the new questionnaire and understanding scales were used to evaluate E&T activities, statistically-significant pretest–posttest changes in career interest and understanding (with large effect sizes ranging from 0.70 to 0.81 standard deviations) supported the efficacy of the instructional activities.  相似文献   

8.
9.
10.
This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students’ science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students’ state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners’ scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students’ motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students’ science achievement, scaffolding students’ scientific understanding, and strengthening students’ motivation to pursue STEM-related careers.  相似文献   

11.
Due to the important impact that biotechnology has on current Western societies, well-informed critical citizens are needed. People prepared to make conscious decisions about aspects of biotechnology that relate to their own lives. Teachers play a central role in all education systems. Thus, the biotechnological literacy of preservice teachers is an important consideration as they will become an influential collective as future teachers of the next generation of children. The attitudes toward science (and biotechnology) that teachers have affect their behavior and influence the way they implement their daily practice of science teaching in school. This study analyzes the attitudes and knowledge of Spanish preservice teachers toward biotechnology. We designed a new survey instrument that was completed by 407 university students who were taking official degree programs in preschool and primary education. Our results point out that although they are aware of biotechnology applications, topics concerning the structure of DNA, management of genetic information inside the cell, genetically modified organism technology and the use of microorganisms as biotechnological tools were not correctly answered. According to our attitude analysis, Spanish preservice teachers could be defined as opponents of genetically modified product acquisition, supporters of biotechnology for medical purposes and highly interested in increasing their knowledge about biotechnology and other scientific advances. Our results show a positive correlation between better knowledge and more positive attitudes toward biotechnology. A Spanish preservice teacher with positive attitudes toward biotechnology tends to be a student with a strong biology background who scored good marks in our knowledge test.  相似文献   

12.
MEASURING SCIENCE INTEREST: RASCH VALIDATION OF THE SCIENCE INTEREST SURVEY   总被引:2,自引:0,他引:2  
Students in the USA have fallen near the bottom in international competitions and tests in mathematics and science. It is thought that extrinsic factors such as family, community, and schools might be more influential than intrinsic attitudes toward science interest. However, there are relatively few valid and reliable measures of intrinsic factors such as interest relating to science. With the lack of intrinsic measures, it is difficult to determine the impact of extrinsic factors on the intrinsic construct. A fuller picture of the factors affecting intrinsic factors such as science interest will allow interventions to become more refined and targeted. Several studies suggest that student interest toward science affects the likelihood of the student pursuing advanced courses in science. The goal of this paper is to establish the validity and reliability of the Science Interest Survey and to determine if the survey meets the formal requirements of measurements as defined by the Rasch model. Results using both IRT and CRT analysis suggest that Science Interest Survey is an adequate measure of the unidimensional construct known as science interest. Results further suggest the Science Interest Survey is a valid and reliable measure for assessing science interest levels.  相似文献   

13.

Research suggests that trajectories toward careers in science, technology, engineering, and mathematics (STEM) emerge early and are influenced by multiple factors. This paper presents a longitudinal study, which uses data from 76 high school students to explore how a student’s vocational self-efficacy and interest are related to his or her middle school behavioral and affective engagement. Measures of vocational self-efficacy and interest are drawn from STEM-related scales in CAPAExplore, while measures of middle school performance and engagement in mathematics are drawn from several previously validated automated indicators extracted from logs of student interaction with ASSISTments, an online learning platform. Results indicate that vocational self-efficacy correlates negatively with confusion, but positively with engaged concentration and carelessness. Interest, which also correlates negatively with confusion, correlates positively with correctness and carelessness. Other disengaged behaviors, such as gaming the system, were not correlated with vocational self-efficacy or interest, despite previous studies indicating that they are associated with future college attendance. We discuss implications for these findings, which have the potential to assist educators or counselors in developing strategies to sustain students’ interest in STEM-related careers.

  相似文献   

14.
Students' lack of interest in studying science and in science-related careers is a concern in the UK and worldwide. Yet there is limited data, particularly longitudinal, on the sources and development of science-related aspirations. In response, the ASPIRES (Science Aspirations and Career Choice: Age 10–14) longitudinal study is investigating the development of students' educational and occupational aspirations over time. In the first phase of the project, a questionnaire exploring science-related aspirations and interests was completed by over 9,000 primary school students across England. This survey allowed us to explore possible associations between attitudes and aspirations, links which have not been investigated in previous attitudinal studies of this scope. Overall, students expressed positive attitudes to science, reported positive parental attitudes to science and held very positive images of scientists. Multilevel modelling analyses revealed that aspirations in science were most strongly related to parental attitudes to science, attitudes to school science and self-concept in science, and are also associated with students' gender, ethnicity and cultural capital. However, the images students held of scientists were not as closely related to aspirations. These factors are discussed in more detail within the paper, alongside a consideration of possible school-related effects.  相似文献   

15.
Past studies investigating university level students' views of nature of science (NOS) were relatively few and most of them were conducted in Western countries. This paper focuses upon comparing the quantitative patterns in Western (US Caucasian and African-American) and non-Western (Taiwanese) students' views of NOS (VNOS) by adopting a survey instrument. This analysis combined with qualitative data begin to uncover details of potential cultural differences in patterns specifically in the US educational context by comparing Caucasian and African-American student responses to a question from a commonly used assessment of VNOS. Results show different patterns of views along the four dimensions of NOS (social negotiation, invented/creative NOS, cultural impacts, and changing/tentative feature of science) according to student major, student gender, and student ethnicity. These differences and similarities have the potential to impact undergraduate education and underrepresentation of cultural minorities in science careers and call for further research into NOS views in the context of diverse student groups.  相似文献   

16.
Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and career direction of afterschool facilitators, primarily women of color in their twenties and thirties, who taught Build IT, an afterschool computer science curriculum for middle school girls. Many of these women indicated that implementing Build IT had influenced their own interest in technology and computer science and in some cases had resulted in their intent to pursue technology and computer science education. We wanted to explore the role that teaching Build IT may have played in activating or reactivating interest in careers in computer science and to see whether in the years following implementation of Build IT, these women pursued STEM education and/or careers. We reached nine facilitators who implemented the program in 2011–12 or shortly after. Many indicated that while facilitating Build IT, they learned along with the participants, increasing their interest in and confidence with technology and computer science. Seven of the nine participants pursued further STEM or computer science learning or modified their career paths to include more of a STEM or computer science focus. Through interviews, we explored what aspects of Build IT influenced these facilitators’ interest and confidence in STEM and when relevant their pursuit of technology and computer science education and careers.  相似文献   

17.
Identifying students’ conceptual scientific understanding is difficult if the appropriate tools are not available for educators. Concept inventories have become a popular tool to assess student understanding; however, traditionally, they are multiple choice tests. International science education standard documents advocate that assessments should be reform based, contain diverse question types, and should align with instructional approaches. To date, no instrument of this type targeting student conceptions in biotechnology has been developed. We report here the development, testing, and validation of a 35-item Biotechnology Instrument for Knowledge Elicitation (BIKE) that includes a mix of question types. The BIKE was designed to elicit student thinking and a variety of conceptual understandings, as opposed to testing closed-ended responses. The design phase contained nine steps including a literature search for content, student interviews, a pilot test, as well as expert review. Data from 175 students over two semesters, including 16 student interviews and six expert reviewers (professors from six different institutions), were used to validate the instrument. Cronbach’s alpha on the pre/posttest was 0.664 and 0.668, respectively, indicating the BIKE has internal consistency. Cohen’s kappa for inter-rater reliability among the 6,525 total items was 0.684 indicating substantial agreement among scorers. Item analysis demonstrated that the items were challenging, there was discrimination among the individual items, and there was alignment with research-based design principles for construct validity. This study provides a reliable and valid conceptual understanding instrument in the understudied area of biotechnology.  相似文献   

18.
The impact of biotechnologies on peoples’ everyday lives continuously increases. Measuring young peoples’ attitudes toward biotechnologies is therefore very important and its results are useful not only for science curriculum developers and policy makers, but also for producers and distributors of genetically modified products. Despite of substantial number of instruments which focused on measuring student attitudes toward biotechnology, a majority of them were not rigorously validated. This study deals with the development and validation of an attitude questionnaire toward biotechnology. Detailed information on development and validation process of the instrument is provided. Data gathered from 326 university students provided evidence for the validity and reliability of the new instrument which consists of 28 attitude items on a five point likert type scale. It is believed that the instrument will serve as a valuable tool for both instructors and researchers in science education to assess students’ biotechnology attitudes.  相似文献   

19.
Declining enrolments in science, technology, engineering and mathematics (STEM) disciplines and a lack of interest in STEM careers are concerning at a time when society is becoming more reliant on complex technologies. We examine student aspirations for STEM careers by drawing on surveys conducted annually from 2012 to 2015. School students in years 3 to 12 (n?=?6492) were asked to indicate their occupational choices. A logistic regression analysis showed that being in the older cohorts, possessing high cultural capital, being male, having a parent in a STEM occupation and high prior achievement in reading and numeracy, were significant. This analysis provides a strong empirical basis for school-based initiatives to improve STEM participation. In particular, strategies should target the following: the persistent lack of interest by females in some careers, improving student academic achievement in both literacy and numeracy and expanding knowledge of STEM careers, especially for students without familial STEM connections.  相似文献   

20.
The number of students in the United States choosing science, technology, engineering or mathematics careers is declining at a time when demand for these occupations is rapidly increasing. Numerous efforts have been undertaken to reverse this trend, yet results are uncertain. One’s attitude is key to many choices one makes, and this includes, for many, what career is pursued. Hence, teachers, informal science educators and researchers often wish to measure children’s attitudes towards science using a pretest and a posttest to determine the effects of a curriculum, an activity or an intervention. However, measuring children’s attitudes toward science has been problematic because of both the limited use of basic psychometrics in checking reliability and validity of instruments and the lack of a single construct of students’ attitudes towards science being surveyed. This article reports the development and testing of an instrument for measuring students’ science attitudes across several dimensions. Thirty-two scientists and teachers from the northeastern and south central United States participated in content validity trials. The instrument was field tested with 549 children (92 elementary-school students, 327 middle-school students and 130 high-school students) from 6 rural and suburban school systems located in the northeastern United States to determine inter-item reliability for each dimension. The resulting instrument, entitled My Attitudes Toward Science (MATS), has 40 items that measure four dimensions: (1) Attitude towards the subject of science; (2) Desire to become a scientist; (3) Value of science to society; and (4) Perception of scientists. The MATS, as a multidimensional instrument, can measure several facets of students’ attitude toward science and is designed to be used across grades levels and to be scored easily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号