首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>题目过抛物线y2=2px(p> 0)的焦点F(p/2,0)的弦(焦点弦)与抛物线相交于A(x_1,y_1),B(x_2,y_2).证明:y_1y_2=-p2=2px(p> 0)的焦点F(p/2,0)的弦(焦点弦)与抛物线相交于A(x_1,y_1),B(x_2,y_2).证明:y_1y_2=-p2,x_1x_2=p2,x_1x_2=p2/4.此抛物线性质问题的证法很多,下面是笔者在平时的教学中,归纳出几种方法,供读者欣赏.  相似文献   

2.
抛物线y~2=2px的焦点弦为AB,则y_Ay_B=-p~2,这是抛物线焦点弦的一条常用性质.对一般的弦而言,也有类似的性质,这里,我们给出一组充要条件,揭示弦的性质. 若AB为抛物线y~2=2px的弦,其中A(x_1,y_1)、B(x_2,y_2).则有: ∠AOB为直角x_1x_2 y_1y_2=0 y_1y_2 Ap~2=0; ∠AOB为锐角x_1x_2 y_1y_2>0 y_1y_2(y_1y_2 4p~2)>0; ∠AOB为钝角x_1x_2 y_y_2<0 y_1y_2(y_1y_2 4p~2)<0. 证明:cos∠AOB=|AO|~2 |BO|~2-|AB|~2/2|AO|·|BO|=2(x_1x_2 y_1y_2)/2|AO|·|BO|,故∠AOB为直角cos∠AOB=0x_1x_2 y_1y_2=0; ∠AOB为锐角cos∠AOB>0 x_1x_2 y_1y_2>0; ∠AOB为钝角cos∠AOB<0 x_1x_2 y_1y_2<0. 又A、B在抛物线上,故y_1~2=2px_1,y_2~2=2px_2,从而(y_1y_2)~2=4p~2x_1x_2,故x_1x_2 y_1y_2=1/4p~2·y_1y_2(y_1y_2 4p~2). 从而 x_1x_2 y_1y_2=0 y_1y_2 4p~2=0(显然y_1y_2≠0), x_1x_2 y_1y_2>0 y_1y_2(y_1y_2 4p~2)>0, x_1x_2 y_1y_2<0 y_1y_2(y_1y_2 4p~2)<0,得证. 应用这组充要条件,可方便地解决与抛物线弦相关的一类问题.  相似文献   

3.
每期一题     
己知抛物线y~2=2px的一条焦点弦被焦点分成长为m,n的两部分求证:1/m 1/n=2/p 如图设A(x_1,y_1),B(x_2,y_2),m=|FA|,n=|FB|,F(1/2p,0),准线方程x 1/2p=0。  相似文献   

4.
圆的切点弦问题蕴涵着圆的许多别具一格的几何性质,同样地,抛物线的切点弦问题的性质也很精彩.近几年来,以抛物线的切点弦性质为背景的高考试题频频亮相,以其独特的魅力,尽显风骚.本文对抛物线的切点弦问题的性质做简单的归纳与思考.1 定值问题性质1 过抛物线的准线与对称轴的交点作抛物线的两条切线,则切点弦长等于该抛物线的通径.证明:设抛物线 y~2=2px(p>0),则其准线与对称轴的交点为(-(p/2),0),设切点 A(x_0,y_0),则切线方  相似文献   

5.
从点P作二次曲线C的两条切线,切点分别是A、B,称线段AB为点P对C的切点弦。本文在建立切点弦(所在直线)方程的基础上,研究有关切点弦的一些性质。一、切点弦方程例1.求椭圆x~2/a~2+y~2/b~2=1外一点P(x_0,y_0)对椭圆的切点弦AB的方程。  相似文献   

6.
在直线x=-m(m>0)上任取一点P作抛物线y2=2px(p>0)的切线,切点为A、B,则直线AB过定点(m,0).过抛物线y2=2px(p>0)的外任一点P作抛物线的两条切线,切点分别为A,B,弦AB的中点Q,则PQ平行于x轴;P与切点弦中点的连线恰好被抛物线平分.  相似文献   

7.
<正>1.圆锥曲线涉及中点弦求曲线方程和直线方程的问题,经常用点差法设而不求解题例1已知椭圆E:x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=-(y_1-y_2)(y_1+y_2)/b2=-(y_1-y_2)(y_1+y_2)/b2。  相似文献   

8.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

9.
定理:设抛物线方程y~2=2px,若过抛物线焦点F(p/2,0),且倾斜角为α(α≠0)的直线,交抛物线于M(x_1,y_1)、N(x_2,y_2),则M、N点的坐标存在如下关系:x_1·x_2=p~2/4 ①y_1·y_2=-P~2 ②证明:过焦点F(p/2,0)且倾斜角为α的直线方程为:  相似文献   

10.
本文介绍抛物线弦所在直线的方程及其应用。设P_1P_2为抛物线y~2=2px的弦,其端点坐标分别为(x_1,y_2),(x_2,y_2),则P_1P_2所在直线方程为 (y-y_1)(y_1+y_2)=2px-y_1~2 (*) 证明:P_1P_2不垂直于y轴时,  相似文献   

11.
贵刊1983年第5期刊登了《一类直线方程的四种求法》一文,该文介绍了解决如下问题的四种方法:过二次曲线C:F(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部[指包含焦点的平面区域(不包括周界)]已知点M(x_0,y_0)作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得点M平分弦AB。对于这类问题,可作如下推广:过M作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得M点为弦AB的n等分点。当n≥3时,用《一类直线方程的四种求法》一文介绍的四种方法来求  相似文献   

12.
每期一题     
题:如图,椭圆 x~2/a~2+y~2/b~2=1的切线与两坐标轴分别交于A、B两点,求三角形OAB的最小面积。 (下面一些解法是解析几何极值问题的常用解题方法。) 解法一利用二次函数极值知识。设切点为(x_0,y_0)(x_0>C,y_0>0),则切线AB的方程为  相似文献   

13.
先看一个例题,如图1,⊙O的方程为x~2+y~2=1,A(2,1)为圆外一点,AP,AQ是⊙O的两条切线,P,Q是切点,求切点弦PQ的方程。解:据设,过点P的圆的切线方程为x_1a+y_1y=1(1)∵A(2,1)在切线上,∴2x_1+y_1=1,∴y_1=1-2x_1,同理y_2=1-2x_2。由两点式得切点弦PQ的方程为(x-x_1)/(x_1-x_2)=(y-(1-2x_1))/((1-2x_1)-(1-2x_2))经整理得2x+y=l(2) 方程(2)正好与方程(1)中把P(x_1,y_1)的坐标换成A的坐标。这是巧合吗?不!有如下结论:自圆外一点A(m,n)向圆引两切线,所得切点弦方程与切点为(x_1,y_1)的圆的切线方程中把(x_1,y_1)换成(m,n)的  相似文献   

14.
数学概念通常是以定义的形式表述的,因此利用定义解题能沟通数学问题内在的本质属性,常常能达到化繁为简、化难为易的效果。本文分类举例说明定义在解题中的运用。 1.利用圆锥曲线的定义 例1 在抛物线x~2=Ay上有两点A(x_1,y_1)和B(x_2,y_2),满足|AB|=y_1 y_2 2。求证:点A,B和这抛物线的焦点三点共线,(1989年广东理工类第二卷第四题 证明:如图,抛物线的焦点为F(0.1)。准线方程为y=-1.点A、B到准线的距离分别为d_1=y_1 1,d_2=y_2 1。  相似文献   

15.
本文将双曲线的弦的垂直平分线及其应用简介如下,供参考.定理 设A、B是双曲线x~2/a~2-y_2/b_2=1上的两点,线段AB的垂直平分线ι交X轴于P(X_0,0),线段AB中点坐标为(x′,y′),则 x_0=e~zx~ι,其中e为双曲线的离心率.证明设A(x_1y_1),B(x_2,y_2),  相似文献   

16.
在解析几何的复习中,我们遇到了这样一道题;已知抛物线 y~2=2px(p>0)上有两点 A、B 关于点 M(2,2)对称.(1)求 p 的取值范围;(2)当 p=2时,该抛物线上是否存在另外两点 C、D,且A、B、C、D 四点共圆?若存在,求出此圆方程;若不存在,请说明理由.对于第一问,同学们都能做出来,即设 A(x_1,y_1)、B(x_2,y_2)是抛物线上关于点 M(2,2)对称的两点,则 x_1 x_2=4,y_1  相似文献   

17.
1.对抛物线y2=2px(p>0),AB为过其焦点的弦,A(x1,Y1),B(x2,y2),则有:|AB|=x1+x3+p. 证明:抛物线的焦点为F(p/2,0),准线方程是l:x=-p/2.过A、B分别作AA'、BB'垂直于l,垂足为A'、B'.由定义可知  相似文献   

18.
例1 已知分别过抛物线 y~2=2px 上点 A(x_1,y_1),B(x_2,y_2)的两条切线相交于 P(x′,y′).求证:x′=(y_1y_2)/2p,y′=(y_1 y_2)/2.证明如图1,由文献[1]可知过 A,B 两点的切线方程为:l_1:y_1y=p(x x_1);l_2:y_2y=p(x x_2).又 P 在 l_1,l_2上,有y_1y′=p(x′ x_1); (1)y_2y′=p(x′ x_2). (2)式(1)-式(2)得(y_1-y_2)y′=p(x_1-x_2).又 x_1=y_1~2/2p,x_2=y_2~2/2p,代入上式整理得y′=1/2(y_1 y_2), (3)将式(3)代入式(1)得1/2y_1(y_1 y_2)=px′ py_1~2/2p,由此得 x′=y_1y_2/2p,所以  相似文献   

19.
F(x.y)=a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(13)x+2a_(23)y+a_(33)=0 (1)设点P_0(x_0,y_0)为不在曲线(1)的焦点所在区域内的点,因而过P_0可向曲线(1)作二条切线,两个切点分别为P_1(x_1,y_1),P_2(x_2,y_2),称联P_1P_2的直线l为曲线(1)关于P_0的切点弦。本文给出l的一种简易求法。 命题:若P_0(x_0,y_0)为平面上不在曲线(1)的焦点区域内的任一点,则曲线(1)关于P_0的切点弦方程为:  相似文献   

20.
<正>二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c的对称轴为x=-1,A(2,1)、B(m,1)为抛物线上  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号