首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
1.(保加利亚1)一个整数序列定义如下: α_0=0,α_1=1,α_n=2α_(n-1)+α_(n-2)(n>1).证明:2~k整除α_n当且仅当2~k整除n. 2.(保加利亚2) 设α_n=((n+1)~2+n~2)~(1/2),n=1,2,…,此处[x]表示x的整数部分、证  相似文献   

2.
定理1 设α_1,α_2,…,α_n∈[2kπ,(2k+1)π],其中 k 取自然数,α_1+α_2+…+α_n=θ(θ为定值),则 sin α_1+sin α_2+…+sin α_n≤nsin θ/n,当且仅当α_1=α_2=……α_n=θ/n 时等号成立(其中 n≥2).证明:采用数学归纳法.①当 n=2时,sin α_1+sin α_2=2sin((α_1+α_2)/2)cos((α_1-α_2)/2)=2sin(θ/2)cos((α_1-α_2)/2)≤2sin(θ/2).②假设 n=m 时命题成立(这里的 m 是大于2的自然数),  相似文献   

3.
《平均不等式》是指:对任意的正实数α_i (i=1,2,…n),有 n~(α_1α_2…α_n)≤(α_1 α_2 … α_n)/n;其中等号当且仅当α_1=α_2=…α_n时成立。根据等号成立的条件,可以给出一个求函数极值(实际上是最值)的法则:对于任意的正值函数φ_i(x)(i=1,2,…n),  相似文献   

4.
概括分析递推关系形如an+1=aan+b/can+d、an+1=λan+f(n)(n≥1)的递推数列通项公式的求法,对于学习数列和教学具有一定的借鉴意义。这两类递推数列通项公式的求解,可以分别采用矩阵法、不动点法、代换法和求导与积分法、叠加法、线性代换。  相似文献   

5.
本文对《几个三角公式及其应用》(“数学通讯”,5,1981)一文的定理1,2作出一个简化证明。原文定理1 设等差数列α_1,α_2,…,α_n的公差为d,则 sum from k=1 to n sinα_k=sin(α_1+n-1/2d)sinn/2d/sind/2 原文定理2 设等差数列α_1,α_2,…,α_n的公差为d,则 sum from k=1 to n cosα_k=cos(α_1+n-1/2-d)sinn/2d/sind/2。证明考虑公式 f(π/2±α)·sinβ=1/2[f(α+β)-f(α-β)]。(1)其中f代表正弦或余弦。若f代表正弦,则左边第一个因式中的α前面取负号,反之取正号。此(1)式是三角函数积化为和公式中某两个公式的综合表  相似文献   

6.
对问题:若数列{x_n}满足递推关系 x_(n 1)=f(x_n),求数列{x_n}的通项公式.我们可以尝试先求出方程 x=f(x)的根,即函数f(x)的不动点,再将递推公式 x_(n 1)=f(x_n)转化为 x_(n 1)-α=a(x_n-α)、x_(n 1)-α=a(x_n-α)~2、x_n 1  相似文献   

7.
均值不等式:“设α_1、α_2、…α_n为n(n>1)个正数,则α_1+α_2+…+α_n≥n (α_1α_2…α_n)~(n/1);等号成立当且仅当α_1=α_2=…α_n”是一个应用比较广泛的不等式,许多外形与它截然不同的不等式的证明,常常能利用它顺得得到解决;不过需要有正确的思路和一定的技巧。本文旨在举例说明利用均值不等式证题的重要思路和技巧,供参考。  相似文献   

8.
对于函数f(x),若存在x_0∈R,使f(x_0) =x_0成立,则称x_0为函数f(x)的不动点.数列与函数密切相关.对于a_(n 1)=(pa_n q)/(ra_n s)型递推数列,利用不动点可以妙求其通项公式.先推导a_(n 1)=pa_n q(p≠1)型递推数列的通项公式.∵p≠1,所以存在α满足α=  相似文献   

9.
因近儿年高考数学卷中有递推数列求通项的命题,因此目前递补数列求通项成了中学数学教学重点内容之一,[1]的作者对求通项方法作了一些论述,但有些地方还需商讨,因此本文再过一点解题方法及注意问题.一般数列要求出它的通英并非易事,但对于相邻项具有线性关系的数列它的通项公式总是可以求得,常用思考方法是引进辅助数列使原来的线性关系式转化为基本数列(等比、等差数列)的相邻项之间的关系式,从而可求得其通项公式. 中学阶段常见求通项类型及解法作如下归纳: 一、α_n=Kα_(n-1) f(n)(α_1 =α)型. 1.若f(n)=0.  相似文献   

10.
(一) 我们知道,方程z~n-1=0(n是自然数)有n个复根α_0,α_1,……,α_(n-1),其中α_k=cos2k/nπ+isin2k/nπ(k=0,1,2…,n-1),根据一元n次方程的韦达定理,有α_0+α_1+α_2+…+α_(n-1)  相似文献   

11.
数列递推公式的意义:若已知数列的第一项a_1且任一项a_n与前一项a_(n-1)之间的关系可以用一个公式表示.类型1形如a_(n+1)=a_n+f(n).解法:把原递推公式转化为a_(n+1)-a_n=f(n),利用累加法(逐差相加法)求解.例1已知数列{a_n}满足a_1=1/2,a_(n+1)=  相似文献   

12.
若x0 满足方程 f(x0 ) =x0 ,则称x0 是函数f(x)的一个不动点 .利用递推数列 f(n)的不动点 ,可将某些由递推关系an =f(an- 1 )所确定的数列转化为较易求通项的数列 (如等差数列或等比数列 ) ,这种方法称为不动点法 .下面举例说明两种常见的递推数列如何用不动点法求其通项公式 .结论 1 若f(x) =ax +b(a≠ 0 ,a≠1) ,p是f(x)的不动点 ,an 满足递推关系an= f(an- 1 ) (n >1) ,则an-p=a(an - 1 -p) ,即 an-p 是公比为a的等比数列 .证明 ∵p是f(x)的不动点 ,∴ap+b =p ,∴b -p=-ap .由an =a·an- 1 +b ,得an-p=a·an- 1 +b -p=a·an- 1 -ap=a(a…  相似文献   

13.
数列试题在高考试卷中一直占有重要位置,以递推形式给出的数列试题又是其中的重中之重,早就有人总结出这类试题中的递推规律常以α_(n 1)=pα_n q形式给出,并详细研究了这类试题的求解方法。但近几年来,随着分省命题的逐步推进,试题的数量、形式出现了空前的繁荣。同时,许多创新试题也脱颖而出,其中数列试题在递推形式的呈现上也有许多新的突破,某些试题的递推形式已由α_(n 1)=pα_n q演变为“g(α_(n 1))=p·g(α_n) q”的形式(其中g(x)在具体问题中是已知函数)。很显然,前者可看成后者当g(α_(n 1))=α_(n 1)的特例。  相似文献   

14.
<正>本文探讨形如an+1=g(n)an+f(n)(*)的一阶递推数列通项的求解方法,其中g(n)、f(n)是关于n的函数.一、an+1=g(n)an型若(*)式中f(n)=0,g(n)≠0,且数列{g(n)}的前n项乘积易化简,则可通过累乘法求得这类递推数列的通项公式.当g(n)为  相似文献   

15.
给出数列{an}的递推公式和首项a1,求数列{an}的通项公式,往往我们可以将所给出的递推公式进行变形,使问题转化为所熟知的bn+1=f(n)bn形式,当bn≠0时,变形得到(b(n+1))/bn=f(n),则由累乘法可得bn=bn/(b(n-1))·(b(n-1))/(b(n-2))…b3/b2·b2/b1·b1= f(n-1)f(n-2)…f(3)f(2)f(1)b1,若f(n-1)、f(n-2)、…、f(3)、f(2)、f(1)的积容易求出,则数列{bn}的通项公式可求出,从而得到数列{an}的通项公式.  相似文献   

16.
新教材将数列放在高一讲授 ,并提出了递推公式的概念 ,笔者认为这是一个很重要的信息 ,许多数列问题中的通项主要由递推关系给出的 ,递归数列在竞赛试题中也是屡见不鲜 .本文举例谈谈线性递归数列求通项的几种常见类型和方法 ,旨在抛砖引玉 .1 可化为 an+1 -an =f (n)型的递归数列方法 :an =a1 + ∑nk=2(ak -ak-1 ) =a1 +∑nk= 2f (k -1)例 1 已知递归数列a1 =2an -an-1 =2 n (n≥ 2 ) .求 an.解 :an =a1 + ∑nk=2f (k -1) =a1 + ∑nk=2(2 k) =n2 + n.2 可化为 an+1 an=f (n)型的递归数列方法 :变形为 anan-1=f (n -1) ,an-1 an-2=f (n -…  相似文献   

17.
[定理1] 设a_1,a_2,…,a_n∈(0,π),a_1+a_2+…+a_n=φ_0(定值),则sina_1+sina_2+…+sina_n≤nsinφ_0/n.当且仅当a-1=a_2…=a_2=φ_0/n时取“=”号(n≥2). 证:(1) 当n=2时,sina_1+sina_2=2sin(a_1+a_2)/2cos(a_1-a_2)/2.  相似文献   

18.
递推数列不等式的证法与其他类型不等式的证法有相似之处,又有它的独特之处. 一、递推法这是常用的基本方法.其原理是根据已知递推关系找出α_n与α_(n-1)的不等关系,进而推出α_(n-1)与α_(n-2),α_(n-2)与α_(n-3),…,α_2与α_1也有此关系,然后将这些不等式统一起来(即对它们的进行相加或相乘等),即可得出所要证明的结论.  相似文献   

19.
在平均值不等式中,“几何平均值G_n≤算术平均值A_n”的应用较广,其证明方法也被人们研究较深,在不同的知识阶段有不同的证法。现介绍如下。 定理 若α_i>0,i=1,2…,n,n>1,A_n=(α_1 α_2 … α_n)/n,G_n=(α_1α_2…α_n)~(1/n)则A_n≥G_n,其中等号当且仅当α_1=α_2=…=α_n时成立。  相似文献   

20.
<正>类型一:累加法形如:a_n=a_(n-1)+f(n)(其中f(n)不是常值函数)例1已知数列{a_n}满足a_1=3,2/a_n-a_(n+1)=n(n+1),则a_n=____。方法指导:先将递推公式变形为a_n-a_(n-1)=f(n),令n=2,3,4,…,n,再将这n-1个式子相加,得a_n-a_1=f(2)+f(3)+…+f(n)。所以,a_n=a_1+f(2)+f(3)+…+f(n)=a_1+  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号