首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我们知道,若P_1(x_1,y_1),P_2(x_2,y_2),P(x,y),且P分P_1P_2的比为λ(λ=-1),见y=y_1 λy_2/1 λ或λ=y-y_1/y_2-y。由公式易得: 1°.λ>0(?)y介于y_1、y_2之间。  相似文献   

2.
我们知道,在直角坐标系中,设点P_1(x_1,y_1)、P_2(x_2,y_2),若点P(x,y)为有向线段P_1P_2的内(外)分点,则点P分P_1P_2所成的比λ为 λ=(P_1P)/(PP_2)=(x-x_1)/(x_2-x)(=(y-y_1)/(y_2-y)>0(<0)。 (*) 特别地,当线段P_1P_2落在x轴上时,纵坐标为0,情形就更加明了(以下讨论仅在x轴上进行,且不妨约定x_10(λ<0),则P为P_1P_2的内(外)分点,亦即P点介于P_1P_2之间(之外),这时有x_1相似文献   

3.
线段的定比分点坐标公式x=(x_1 λx_2)/(1 λ),y:(y_1 λy_2)/(1 λ),λ=(x-x_1)/(x_2-x)反映了线段的起点P(x_1,y_1)、终点P_2(x_2,y_2)、分点P(x,y)与定  相似文献   

4.
在变换φ下,xOy平面内的点P(x,y),变换为uOv平面内的点尸P~1(u,v)。设xOy平面内的点P_1(x_1,y_1)、P_2(x_2,y_2),通过变换φ,在uOv平面内对应的点分别为P_1′(u_1,v_1)、P_2′(u_2,v_2)(x_1≠x_2,u_1≠u_2),则有  相似文献   

5.
1.直线方向向量的概念 在直角坐标系内,已知两点P_1(x_1,y_1),P_2(x_2,y_2)(x_1≠x_2),那么直线P_1P_2就是确定的,这条直线的斜率也是确定的,其公式为:  相似文献   

6.
一、下面一题的求解对不对?例1 过A(-1,0)作直线,求夹在双曲线x~2/4-y~2=1间线段中点P的轨迹方程.解:设P(x,y)为线段P_1P_2的中点,端点P_1(x_1,y_1),P_2(x_2,y_2),按照题设条件可得到下列关  相似文献   

7.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

8.
本文给出一个关于直线分线段所成比的性质定理。并举例说明它的广泛应用.定理设直线 l:Ax By C=0与过P_1(x_1,y_1)、P_2(x_2,y_2)的不同两点的连线相交于点 P(不同于 P_1、P_2,且 P_1、P_2不在 l上),则  相似文献   

9.
本文介绍抛物线弦所在直线的方程及其应用。设P_1P_2为抛物线y~2=2px的弦,其端点坐标分别为(x_1,y_2),(x_2,y_2),则P_1P_2所在直线方程为 (y-y_1)(y_1+y_2)=2px-y_1~2 (*) 证明:P_1P_2不垂直于y轴时,  相似文献   

10.
本文介绍利用直线两点式参数方程来证明比例式的一种规范化有效方法,供参考。一、直线两点式参数方程如图, 设P_1(x_1,y_1)、P(x_2,y_2)、P(x,y)都是直线l上的点,且P_1P/PP_2=λ则(x=x_1+λx_2/1+λ)/(y=y_+λy_2/1+λ)(λ为参数,λ≠-1) 即为过P_1、P_2两点的直线的参数方程。∵由(x_1-x_2)/(x-x_2)=1+λ 及  相似文献   

11.
解析几何中的中点坐标公式大家是十分熟悉的:由这个公式易看出一个事实,即x_1,x,x_2;y_1,y,y_2两组数都是等差数列,不妨设其公差分别为d_1,d_2。本文的目的在于探讨这两个公差之比的几何意义及其应用。设P_1(x_1,y_1),P_2(x_2,y_2)分别是直线l与二次曲线C的两个交点,P(x,y)为P_1P_2的中点,则d_2/d_1就是弦P_1P_2的斜率k。这一几何意义是不难证明的事实上,d_2/d_1=(y-y_1)/(x-x_1)=k。  相似文献   

12.
文[1]讨论了凸多边形的绝对值方程.本文给出多边形的参数方程.我们知道,如P_1和P_2坐标分别为(x_1,y_1)和(x_2,y_2),则线段P_1P_2可由如下参数方程给出:  相似文献   

13.
F(x.y)=a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(13)x+2a_(23)y+a_(33)=0 (1)设点P_0(x_0,y_0)为不在曲线(1)的焦点所在区域内的点,因而过P_0可向曲线(1)作二条切线,两个切点分别为P_1(x_1,y_1),P_2(x_2,y_2),称联P_1P_2的直线l为曲线(1)关于P_0的切点弦。本文给出l的一种简易求法。 命题:若P_0(x_0,y_0)为平面上不在曲线(1)的焦点区域内的任一点,则曲线(1)关于P_0的切点弦方程为:  相似文献   

14.
考虑到定比分点公式中λ是有向线段的比,我们可以很容易地得到一个很有用处的定理:过 P_1(x_1,y_1),P_2(x_2,y_2)两点的直线若与直线L:Ax+By+C=0相交于点P,则  相似文献   

15.
设P_1、P_2是直线l上的两点,点P是l上不同于P_1、P_2的任意一点,则存在一个实数λ,使(?)=λ(?),λ叫做点P分有向线段(?)所成的比,记为λ=(?).若P_1(x_1,y_1)、P_2(x_2,y_2)、  相似文献   

16.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

17.
<正>直线的参数方程是由直线经过的定点和其倾斜角确定的.经过定点P_0(x_0,y_0),倾斜角为α的直线的参数方程为{x=x_0+tcosα,y=y_0+tsinα(为参数).我们不妨把直线参数方程的这种形式称之为直线参数方程的标准式.一、直线l参数方程中参数t的深层理解设直线l过定点P(x_0,y_0),P,P_1,P_2是直线l上的点,在参数方程标准式中相应参数值分別为t、t_1、t_2,则(1)P与P_0的距离为|PP_0|=|t|.  相似文献   

18.
对于点列P_1(x_1,y_1)、P_2(x_2、y_2)、P_3(x_3,y_3),有关于它们的直观的几何性质,也有关于它们的代数性质。一些数学问题,若能精心设计,注意构造“点列”来研究,会使解法新颖别致,简洁明瞭。本文试图以课本及有关刊物上的问题为例说明之。  相似文献   

19.
众所周知,过二次曲线Ax~2+Cy~2+Dx+Ey+F=0 (g)上一点P_1(x_1,y_1)的切线方程为Ax_1x+Cy_1y+D((x_1+x)/2)+E((y_1+y)/2)+F=0(h)。这是一个将切点(曲线上的点)的坐标x_1、y_1与切线上的点(曲线外的点)的坐标x、y联系起来的公式。当已知切点P_1的坐标P_1(x_1,y_1)时,将x、y看作变量,则(h)为过P_1的切线上点的坐标满足的方程,即过P_1的切线方程。当已知曲线外一点P的坐标P(x,y)时,将x_1、y_1看作变量,则(h)  相似文献   

20.
引理1 设两已知点p_1(x_1,y_1)、p_2(x_2,y_2)的连线交直线Ax+By+c=0于点P(P_2不在此直线上).则  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号