首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

2.
一、利用全等三角形的性质证明例1 已知:如图1,D、E在线段BC上,AD=AE,BD=CE.求证:∠B=∠C.证明:∵AD=AE,∴∠1=∠2,∴∠ADB=∠AEC在△ABD和△ACE中,BD=CE,∠ADB=∠AEC,AD=AE,∴△ABD≌△ACE(SAS).∴∠B=∠C.  相似文献   

3.
三角形的中位线定理揭示了其中位线与第三边的位置关系与数量关系,巧用它可以证明若干与线段中点有关的问题. 例1 如图1,△ABC中,BD 平分∠ABC,AD BD于D,E为AC的中点, 求证:DE∥BC. 证明:延长AD交BC于F. ∵BD平分∠ABC,又AD BD 于D,∴AD=FD,又∵AE= CE,由三角形中位线定理得: DE∥FC,∴DE∥BC.  相似文献   

4.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

5.
1.证两角相等例1 已知在等腰△ABC中,∠A=90°, 在AC上取AE=1/3AC,在AB 上取AD=2/3AB,求证∠ADE =∠EBC.(04年福建南平中考) 图1 证明如图1,设∠ADE=a,∠EBC= β,AE=BD=a,则 AD=EC=2a,AB=AC=3a, 作AP上BC,EF上BC,P、F分别为垂足, 则 EF∥AP, 所以 EF/AP=CE/CA=2/3,  相似文献   

6.
在△ ABC中 ,∠ C=90°,CD⊥ AB于 D,AM是∠ BAC的平分线 ,交 CD于 E,交 BC于 M,过E作 EF∥ AB交 BC于 F。求证 :CM=BF。证法一 :(运用三角形知识 )证明 :过 M作 MN⊥ AB于点 N。∵∠ 1=∠ 2 ,易证△ ACM≌△ ANM,∴CM=MN。  ( 1)又 CD⊥ ABMN⊥ AB CD∥ MN, ∠ 3=∠ 5∠ 4 =∠ 5 ∠ 3=∠ 4 CE=CM。  ( 2 )由 ( 1)、( 2 )得 CE=MN。在 Rt△ EFC和 Rt△ NBM中 ,EF∥ AB ∠ B=∠ CFE,∠ CEF=∠ MNB,CE=MN Rt△ EFC≌ Rt△ NBM,∴ CF=BM,∴ CM=BF。  证法二 :(运用四边形知识 )证明 :过 M…  相似文献   

7.
三角形中位线定理说明了三角形的中位线与第三边的位置关系和数量关系.利用这两种关系,可证明若于与线段中点有关的问题.例1 如图1,△ABC中,BD平分∠ABC,AD⊥BD于D,E为Ac的中点.求证:DE//BC.分析由E为AC的中点,若延长AD交BC于F,那么要证DE//BC,则只要证D为AF的中点.这只要证△BDA≌△BDF.∵AD⊥BD,∴∠BDA=∠BDF=90°.∵∠1=∠2,BD=BD,∴∠BDA≌△BDF.  相似文献   

8.
在1997年安徽省初中数学竞赛中,有这样一道题:例1如图1,在△ABC中,∠BAC=90°AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.分析:过C作CM⊥AC交AF延长线于  相似文献   

9.
1.70°,110°.2.矩形,正方形.3.20cm,24cm2.4.4cm,(4+43)cm.5.112.5°.6.①②③.7.22-2.8.50°,130°.9.C.10.B.11.C.12.D.13.D.14.C.15.B.16.C.17.(1)连结AC,∵O是对角线AC的中点,OA=OC,∵∠EAO=∠FCO,∠AOE=∠COF,∴△AOE≌△COF,∴AE=CF.(2)结论仍然成立,△AOE≌△COF,∴AE=CF.18.∵AE∥FC,∴∠EAC=∠FCA.又∵∠AOE=COF,AO=CO,∴△AOE≌△COF,∴EO=FO.又EF⊥AC,∴AC是EF的垂直平分线,AF=AE,CF=CE.∵EA=EC,∴AF=AE=CE=CF,∴四边形AFCE为菱形.19.(1)AE=CF(或OE=OF;DE⊥AC;BF⊥AC;DE∥…  相似文献   

10.
巧添辅助圆     
许多几何问题,若能恰当添出辅助圆,充分利用圆的丰富性质,便能获得简捷巧妙的解法. 例1 在△ABC中,∠ABC=∠C,∠A=100°,BE是∠B平分线,求证:AE+BE=BC.图1证明 作△ABE的外接圆交BC于D,连结ED.∵∠A=100°,AB=AC,∴∠ABC=∠C=40°.又∵BE平分∠ABC,∴∠EBD=20°,AE=DE,∴AE=DE.又∵四边形ABDE为圆内接四边形,∴∠DEC=∠ABC=40°,∴∠DEC=∠C.∴DE=DC,∴AE=CD.∵∠BDE+∠A=180°,∠A=100°,∴∠BDE=80°,∴∠BED=80°,∴BE=BD,∴BC=BE+AE. 例2 已知等腰梯形ABCD中,AD∥BC.AD=a,BC=b,AB=CD=…  相似文献   

11.
在解梯形问题时,常常需要添作辅助线,其目的就是将梯形问题转化为同学们所熟悉的平行四边形和三角形来解决.下面举例说明梯形中常用的辅助线的作法郾一、作梯形的高例1如图1,在直角梯形ABCD中,AD∥BC,∠D=∠C=90°,MA=MB,∠BMC=75°,∠AMD=45°.求证:BC=CD郾证明作AE⊥BC于E郾∵AD∥BC,∴DC=AE郾∵∠AMB=180°-75°-45°=60°,MA=MB,∴△AMB为正三角形郾∴AB=BM郾又∵∠ABE=60°+15°=75°=∠BMC,∴Rt△ABE≌Rt△BMC郾∴AE=BC郾∴BC=CD郾二、作梯形的中位线例2如图2,在梯形ABCD中,AD∥BC,AC⊥BD,垂足为O…  相似文献   

12.
1.如图1,△ABC中,AB≠AC,△ADB与△AEC都是等边三角形(三边相等、三内角相等).那么,CD与BE是否相等?为什么?图1图22.已知,如图2,△ABC中,BD⊥AC于D,CE⊥AB于E,他们相交于点F,且BF=AC.在CE的延长线上取点G,使CG=AB.连接AF,AG.试说明AF⊥AG.3.已知,如图3,AD∥BC,DE∥BF,点E,F在AC上,AF=CE.你能说明AB与DC的位置关系吗?图3图4图54.已知,如图4,CF是正方形ABCD外角∠DCG的平分线,E是BC边上的一点,且AE⊥EF.你能说明AE与EF相等吗?(提示:正方形的四条边相等.设法找到分别以AE,EF为一边的两个三角形,并说明他…  相似文献   

13.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

14.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

15.
三角形全等是初中几何的一个重点内容 ,同时也是一个难点 ,特别是当三角形出现重合部分时 ,更难找出对应角和对应边。现介绍一种方法———分离图形法 ,即把所需证明全等的两个三角形从原图形中平移出来。例 1 求证 :等腰三角形两腰上的高相等。已知 :如图 1 ,在△ABC中 ,AB =AC ,BD⊥AC ,CE⊥AB ,垂足分别是D、E 求证 :BD =CE 分析 :BD和CE可分别看成△ABD和△ACE的两条边 ,便可把BD和CE所在三角形分离出来 ,如图 1所示 ,更易找出这两个三角形的相等的边和角。图 1证明 :∵BD⊥AC ,CE⊥AB∴∠ADB =∠AEC =90°在△AB…  相似文献   

16.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

17.
学习了《相似形》一章后,我们可以借助比例来证明很多类型的几何题.一、证明两线段相等例1如图1,点C为线段AB上一点,△ACM、△CBN都是等边三角形,AN交CM于E,BM交CN于F.求证:CE=CF.证明 由已知易得二、证明两角相等例2 已知:在梯形ABCD中,AD∥BC,AB=DC求证:∠B=∠C.证明  延长BA、CD交于点E(如图2).三、证明线段不等例3 在△ABC中,AB=AC,D是BC延长线上一点,E是AB上一点,DE交AC于点F.求证:AE<AF.证明  过B作BG∥EF交AC延长线于G(如图3),则AG>AC=AB.四、证明线段和…  相似文献   

18.
原题已知AB=AC,CD⊥AB于点D,BE上AC于点E,BE与CD相交于点O,(1)求证:AD=AE.(2)连接OA、BC,试判断直线OA、BC的位置关系并说明理由.提供的标准答案:(1)证明:如图1中,在△ACD与△ABE中,∵.∠ADC=∠A EB=90°,∠A=∠A,AC=AB,∴△ACD≌△ABE.∴AD=AE.(2)互相垂直;证明连接OA、BC,如图2,在Rt△ADO与Rt△AEO中,  相似文献   

19.
证明等积式一般先将它恰当地化成比例式。若比例式中的四条线段构成有关相似三角形对应边的比 ,则问题较易解决。否则 ,应考虑添加辅助线 ,构成有关的相似三角形 ,以助问题的解决。  例 1.在△ ABC中 (AB>AC)的边 AB上取一点 D,在边 AC上取一点 E,使 AD=AE,直线 DE和BC的延长线交于点 P,求证 BP∶ CP=BD∶ CE。证明 :过点 C作CF∥ AB交 PD于F,则 BPCP=BDCF。∵AD=AD,∴∠ 1=∠ 4 ,∴∠ 3=∠ 4 ,∴ CE=CF,∴ BPCP=BDCE。  说明 :这是过分点 C作平行线 ,过 C还可作 CG∥ PD交 AB于 G(如上图 )。另证 :过 B作…  相似文献   

20.
在全国众多的竞赛中,往往会遇到一些相似的题,但在同样的背景中,由于待求的问题不同,用到和得到的知识也不同. 例1 如图1,在△ABC中,∠A=90°,AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF. (97年安徽竞赛) 证明 作AH⊥BC于H,交BD于G. 在△BGA和△AFC中  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号