首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
信度小议     
《信读小议》一文讨论了统计推断中给定信度的必要性,并就某个正态总体N(μ,σ~2)的参数μ的假设检验问题,当原假设为H_0:Eξ=μ_0,备择假设为H_1:Eξ=μ_1时,确定了一个给定信度的方法。  相似文献   

2.
一类非正态总体未知参数的Bayes假设检验   总被引:1,自引:0,他引:1  
利用贝叶斯统计思想总结了两种常见的假设检验方法,在此基础上针对H0∶θ=0θ,θ≠θ0这样的假设检验问题,提出了构造参数θ的否定域,即求出参数θ的置信概率为1-α的最大后验区间,区域Θ-D为参数θ的否定域,检验θ是否在否定域内,若在就否定H0,运用这样的思想对其进行检验.并且讨论了γ-分布与β-分布,β-分布与F-分布,γ-分布与χ2-分布之间的相互关系,借助以上的性质,研究三类非正态总体指数分布、二项分布和泊松分布的未知参数的贝叶斯假设检验,给出了相应的否定域.  相似文献   

3.
讨论了负相伴样本情形指数分布中寿命参数θ的经验Bayes单侧检验问题:H0:θ≤θ0←→H1:θ〉θ0,利用概率密度函数的核估计构造了参数的经验Bayes单侧检验函数,在适当的条件下证明了所提出的经验Bayes检验函数的渐近最优性,并获得了其收敛速度.  相似文献   

4.
下面三题都是高中《立体几何(必修)》教材中的习题. 题目1 如图,AB和平面α成的角是θ_1,AC在平面α内,AC和AB的射影AB′,所成角为θ_2,设么∠BAC=θ.求证: cosθ_1·cosθ_2=cosθ.(P.117第3题) 题目2 经过一个角的顶点引这个角所在的平面的斜线.如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.  相似文献   

5.
本刊90年3期《一道值得重视的立体几何习题》、92年2期《一个值得重视的二面角公式》讨论了立体几何中的一个习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1cosθ_2=cosθ”的应用和推广,很有教益,也非常重要。笔者认为,这习题之所以重要,不是没有涉及二面角,而是把直二面角的存在与面角的计算公式:  相似文献   

6.
正1、如图:已知二面角α-MN-β,A∈MN,AB(?)α,AC(?)β,设∠BAN=θ_1,∠CAN=θ_2,二面角α-MN-β的大小为θ_3,∠BAC=θ,那么cosθ=cosθ_1cosθ_2+sinθ_1sinθ_2cosθ_3证明:如图(一)1°、当θ_1、θ_2均为锐角时,在AB上取一点E(异于点A),在平面α内作EG⊥MN,垂足为G,在平面β内作GF⊥MN  相似文献   

7.
定理1 设α_1,α_2,…,α_n∈[2kπ,(2k+1)π],其中 k 取自然数,α_1+α_2+…+α_n=θ(θ为定值),则 sin α_1+sin α_2+…+sin α_n≤nsin θ/n,当且仅当α_1=α_2=……α_n=θ/n 时等号成立(其中 n≥2).证明:采用数学归纳法.①当 n=2时,sin α_1+sin α_2=2sin((α_1+α_2)/2)cos((α_1-α_2)/2)=2sin(θ/2)cos((α_1-α_2)/2)≤2sin(θ/2).②假设 n=m 时命题成立(这里的 m 是大于2的自然数),  相似文献   

8.
六年制重点高中数学课本(试用本)《立体几何》P34第10题是: 求证:两条平行线和同一平面所成的角相等。人民教育出版社出版的教学参考书是这样给出“已知”的: 已知:a∥b,a∩α=A_1,b∩α=B_1,∠θ_1,θ_2分别是a、b与α所成的角。显然这里的“a∩α=A_1,b∩α=A_2”缩小了题目的条件范围,使后来的证明漏掉如下面三个图所示的∠θ_1=∠θ_2=0°的情况。  相似文献   

9.
立体几何课本第117页有一道习题:如图1,AB和平面α所成角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1·cosθ_2=cosθ(1)。此题证明并不难,利用三垂线定理和直角三角形中的边角关系,即可证得。值得指出的是可以引导学生从这个等式中学到更多的东  相似文献   

10.
高中《立体几何》(必修本)P_(117)总复习参考题第3题.如图1,AB 和平面α所成的角为θ_1,AC在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠BAC=θ.求证:cosθ_1·cosθ_2=cosθ.本题只要利用三垂线定理(或逆定理)便可证明.由此不难得到下面两个结论:(1)公式成立的充要条件为角θ_1,θ_2所在的  相似文献   

11.
高中《立体几何》(必修) P_(117)第3题:如图1,AB 和平面 a所成的角是θ_1,AC 在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠ABC=θ.求证:cosθ_1·cosθ_2=cosθ.证明略.显然,题中的θ_1、θ_2、θ都是锐角;由余弦函数的单调性知,cosθ_1>cosθ,且cosθ_2>cosθ.于是θ_1  相似文献   

12.
几乎所有的数学复习资料和习题集中,都有这样一类习题:“对于任意实数a,…”,“若…对于任意实代入上式得f(-x)=f(x). 故f(x)为奇函数. 例7.设a、b、A、B∈R,且 f(θ)=1-asinθ-bcosβ-Asin2θ-Bcos2θ, 若对于所有的实数θ恒有f(θ)≥0,求证: A~3+B~2≤1,a~2+b~2≤2. 证明,引入辅助角α、β,使得a/r=cosα,b/r=sina,A/R=cosβ,B/R=sinτ,其中r=(a~2+b~2)~(1/2),R=(A~2+B~2)~(1/2).则由f(θ)≥0得1-rsin(θ+α)-Rsin(2θ+β)≥0.(1) 由于(1)式对任何实数θ都成立,则对于π+θ也成立.即1-rsin(π+θ+α)-Rsin(2x+2θ+β)≥0. 即1+rsin(θ+α)-Rsin(2θ+β)≥0.(2) (1)+(2)得2-2Rsin(2θ+β)≥0.(3) 由于(3)式对任何实数日亦成立,则对于2θ+β=π/2也成立,即2—2R≥0. ∴ R≤1,即(A~2+B~2)≤1,故A~+B~2≤1. 用同样的方法可证a~2+b~2≤2(略). 四、求导法如果关于任意变量的解析式恒等于一个常数,就可以对这个恒等式两边求导,然后利用零解析式的特性求其他的条件变量. 例8.sin~2θ+sin~2(θ+α)+sin~2(θ+β)=3/2对任意的实数θ都成立,求α、β的值(0≤α<β≤π). 解:题设等式两边对口求导得 sin2θ+sin[2(θ+α)]+sin[2(θ+β)]≡0, 即(1+cos2α+cos2β)sin2θ+(sin2α+sin2β)cos2θ≡0, 由此得解得α=π/3,β=(2π)/3。  相似文献   

13.
对只有一个变点模型:其中ε(t)为模型的随机误差,μ1;μ2,β1,β2,t0为未知参数,讨论了关于变点t0,跳跃度θ(=μ2-μ1)和坡变度λ(=β2-β1)的假设检验和区间估计问题。  相似文献   

14.
主要介绍了假设检验中的各种参数信息,包括显著性水平α的最佳选择方法,Z检验统计量及相关参数,单总体t检验统计量参数和卡方检验的统计量参数,P值检验的参数.对每个参数的意义做了简要的讨论,对使用假设检验解决问题提供一定的理论指导.  相似文献   

15.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱所成的锐角分别为θ_1和θ_2且θ_1,θ_2具有公共边,则有: cosθ=cosθ_1cosθ_2 sinθ_1sinθ_2cosφ。当φ=90°时,公式为cosθ=cosθ_1cosθ_2。证明: 如图,∠BAC=θ,∠BAO=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=α,  相似文献   

16.
设总体X服从正态分布,X~N(μ,σ~2),对未知参数σ~2的广义似然比捡验,在一般的书中往往仅讨论如下形式的检验问题:H_0:σ~2=σ_0~2H_1:σ~2≠σ_0~2本文将讨论如下三种形式的广义似然比检验,并与相应的一致最优势无偏检验相比较,它们是:  相似文献   

17.
探讨了基于充分统计量的几个重要应用,重点讨论了充分统计量在参数估计中一致最小方差无偏估计和极大似然估计的构造方法及在假设检验中检验函数的构造方法。  相似文献   

18.
立体几何命题中,求二面角的值是一种常见而且重要的问题。一般的做法是先找出二面角的平面角再计算。本文拟给出一个直接求二面角的公式,并讨论一些相关问题。 定理 设二面角M-AB-N的大小为a,P∈AB,D∈平面N,C∈平面M,∠CPB=θ_1,∠DPB=θ_2,∠CPD=θ,则有 cosθ-cosθ_1cosθ_2 证明:如图1,作AB的垂面,分别交PC、AB、PD于C、E、D.则∠CED=a,∠CEP=∠DEP=90°.设PE=x,从而有PC=xsecθ_1,EC=xtgθ_1,PD=xsecθ_2,DE=xtgθ_2. 在△PCD与△ECD中,分别用余弦定理求CD~2,得整理得 应用此定理便可直接求出二面角的值,请看下面的例子。  相似文献   

19.
充分利用课本中的习题,引导学生对习题中的条件和结论进行多变或引伸,或扩充,进而得出新的结论,能起到举一反三的效果。高中立体几何课本(甲种本)总复习参考题中有这样一道习题:“如图,AB和平面α所成的角是θ,AC在平面α内,AC和AB的射影AB’成角θ,设∠BAC=θ,求证:cosθ_1·cosθ_2=cosθ.”这道题的证明并不困难,但其结论却是有用的。用这个  相似文献   

20.
一九八二年二十八省、市、自治区联合数学竞赛试题的第二题是这样的: 已知四面体SABC中,∠ASB=π/2,∠ASC=α(0<α<π/2),∠BSC=β(0<β<π/2),以SC为棱的二面角的平面角为θ。求证:θ=π-arc cos(ctgα·ctgβ)。本题可作出平面角θ,然后将θ置于三角形中求解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号