首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1 分析法分析法就是从题目的结论出发 ,逐步找出使结论成立的原因 ,直到找出所用的原因恰好是题目的已知条件或所学过的定理 ,再按分析的思路从后往前把证题过程写出来 .图 1例 1 如图 1 ,△ABC中 ,∠A的平分线AD交BC于D ,⊙O过点A且与BC相切于D ,与AB、AC分别相交于E、F ,AD与EF相交于G .求证 :AF·FC =GF·DC .( 2 0 0 1 ,河南省中考题 )证题思路 :AF·FC =GF·DC AFDC=GFFC △DCF∽AFG(连结DF) ∠CDF =∠FAD∠C =∠AFG EF∥BC ∠EFD =∠CDF ∠EFD =…  相似文献   

2.
《中学数学教学参考》1 999年第 1 2期第 1 8页之例 3,是一道几何证明题范例 ,但原文是利用很复杂的三角恒等式来解决的 .下面给出该例题之简短几何证明 ,供读者参考 .原题 已知ABCD是正方形(图 1 ) ,在BC边上任取一点E ,又AF平分∠DAE交CD于F .求证 :AE =BE DF .几何证法 :以A为轴心 ,将△ADF旋转 90°到△ABG的位置(图 2 ) .显然 ,G点在CB的延长线上 .设∠DAF =α ,则∠DFA =90° -α ,且∠FAE=α .但∠FAG =90°,故∠EAG=90° -α .而∠BGA =∠DFA ,因此∠BGA =∠EAG ,所以…  相似文献   

3.
圆中同一条直线上的四条线段成比例问题是常见的题型之一 ,解题思路是通过转化 ,运用相似形或圆中有关定理加以解决 .1 利用相似形例 1 如图 1 ,圆内两弦AB与AC的夹角为60°,E、F分别为AB、AC的中点 ,EF分别交AB、AC于G、H ,求证 :GH2 =GE·HF .分析 将乘积转化为比例式 GEGH =GHHF,则只须证△AGE∽△FHA和△AGH为正三角形即可 .证明 因为∠BAC =60°,所以BC =1 2 0°,BAC=2 4 0°.又E、F分别为AB和AC中点 .所以∠ 2 =∠ 4 ,∠ 1 =∠F .∠ 3=∠ 1 ∠ 2 ,∠AHG =∠ 4 ∠F …  相似文献   

4.
给定△ABC和一点P ,满足∠QAC =∠PAB ,∠QBA =∠PBC ,∠QCB =∠PCA的点 (如图 )Q叫做P关于△ABC的等角共轭点[1] [2 ] .我们发现了等角共轭点的一条新性质 :定理 设P、Q是△ABC的等角共轭点 ,则AP·AQAB·AC BP·BQBC·BA CP·CQCA·CB=1 .证明 :如图 ,在射线AQ上取点D ,使∠ACD =∠APB ,因∠APB >∠ACB ,故D在△ABC外 .又因∠PAB =∠CAD ,从而△ABP∽△ADC ,故ABAD=APAC=BPCD,CD =BP·ACAP .①又由∠QAB =∠PAC ,A…  相似文献   

5.
题目 如图 1,在△ABC中 ,∠A =6 0°,AB >AC ,点O是外心 ,两条高BE、CF交于H点 .点M、N分别在线段BH、HF上 ,且满足BM =CN .求MH +NHOH 的值 .图 1  解法 1 连AH交BC于D ,过O作OP⊥BC于P ,连AP交OH于G .设⊙O的半径为R ,连AO、BO ,则AO =BO =R .由∠A =6 0°,知∠BOP =12 ∠BOC =6 0° ,OP= 12 BO =12 R .由欧拉定理 ,知G为△ABC的重心 ,且 OPAH =PGGA=12 ,故AH =2OP =R .设∠BAO =α ,由∠AOB2∠C ,知∠BAO =90° -∠C ,且∠HAC…  相似文献   

6.
题目 如图 1 ,已知四边形ABCD外接圆⊙O的半径为 2 ,对角线AC与BD的交点为E ,AE =EC ,AB =2AE ,BD =2 3.求四边形ABCD的面积 .( 2 0 0 0年全国初三数学竞赛题 )这是一道综合性与技巧性都较强的试题 ,解题的思路开阔 ,方法较多 .图 1图 2  解法一 如图 2 ,∵ AB =2AE ,AE =EC ,∴ AB2 =2AE2 =AE·2AE =AE·AC .∴  ABAC =AEAB.又∠BAE =∠CAB ,∴ △ABE∽△ACB .∴ ∠ABE =∠ACB .∵ ∠ACB =∠ADB ,∴ ∠ABE =∠ADB .∴ AB =AD .作直径…  相似文献   

7.
全等三角形是能够完全重合的两个三角形 ,它们的对应边相等 ,对应角相等 .巧用这两个相等 ,可顺利地解答一些几何求值和证明问题 .例 1 如图 1 ,在△ABC中 ,∠ACB =90° ,AC=BC ,AE是BC边上的中线 ,过C作CF⊥AE ,垂足是F ,过B作BD⊥BC交CF的延长线于D ,AC =1 2 .求BD的长 . ( 1 997年浙江省中考题 ) 解 ∵ ∠ACB =90°,CF⊥AE于F ,∴ ∠ 1 =90° -∠ 3=∠ 2 .在△DBC和△ECA中 ,∵ ∠DBC =∠ECA =90° ,BC =AC ,∠ 1 =∠ 2 ,∴ △DBC≌△ECA .∴ BD =CE .∵ C…  相似文献   

8.
相似三角形的判定定理1,是判断两个三角形相似中最常用的定理,通过两个三角形相似,可得到线段成比例,解决有关线段成比例问题,现举例如下:例1如图1,已知△PQR是等边三角形,∠APB=120°,求证:AQ·RB=QR2.分析:因为△PQR是等边三角形,所以要证AQ·RB=QR2,即证AQ∶QR=QR∶RB,故证AQ∶PR=QP∶RB,因此需证△AQP∽PRB,但∠AQP与∠PRB都是等边三角形的外角,又由外角定理和已知条件∠APB=120°,可证明∠APQ=∠B,由此得到△AQP和△PRB相似。证明:∵△PQR是等边三角形,∠APB=120°∴∠APQ+∠BPR=60°∵∠B+∠BPR=∠PR…  相似文献   

9.
20 0 1年由人民教育出版社数学室编著的九年义务教育三年制初级中学教科书《几何》第二册第 2 34页例 4如下 :如右图 ,已知∠ABC =∠CDB =90°,AC =a ,BC =b ,当BD与a、b之间满足怎样的关系时 ,△ABC∽△CDB ?现将《几何》第二册第 2 34页中对该例题的分析解答抄录于下 :分析 : 因为△ABC与△CDB都是直角三角形 ,所以要使△ABC∽△CDB ,只要AC与BC ,BC与BD分别成对应边 ,并且AC/BC =BC/BD即可 ,这样就可以求出BD与a、b之间的关系式。解 ∵∠ABC =∠CDB =90°∴当AC/BC =…  相似文献   

10.
《几何》第二册《三角形》一章§3.3介绍了三角形的内角和定理及其三个推论,它们是这一章的基础知识,利用它们可以解决许多几何问题.一、证角相等或不等例1如图1,在△ABC中,∠ACB=90°,CD⊥AB于D.求证:∠A=∠BCD.证明∵ ∠ACB=90°,∴∠A=90°∠B.∵CD⊥AB于D,∴ ∠CDB=90°.∴∠BCD=90°-∠B.∴∠A=∠BCH.例2如图2,已知P是△ABC内一点.求证:∠BPC ∠BAC.证明延长CP交AB于D.ZBHC是否ACD的一个外角,rtBDCMMBAC.zB…  相似文献   

11.
一、填空题1 在△ABC中 ,∠C =90°,∠A =32°,那么∠B =.(2 0 0 1年广西壮族自治区中考题 )2 在Rt△ABC中 ,若锐角A的平分线与锐角B的邻补角的平分线相交于点D ,则∠ADB =. (2 0 0 1年河北省中考题 )3 如图 1,在△ABC中 ,∠B =∠C ,FD⊥BC ,DE⊥AB ,∠AFD =15 8° ,则∠EDF =度 . (2 0 0 1年天津市中考题 )4 长度为 5cm ,7cm ,10cm的三条线段能否组成三角形 ?答 :.(2 0 0 1年山东省滨州市中考题 )图 1图 2   5 如图 2 ,AD∥BC ,E在AB的延长线上 .若∠ 1=6 0° ,∠ 2 =5 0°,则∠A…  相似文献   

12.
“圆”是初中几何的重要内容 ,其性质、定理较多 ,题目涉及面较广 ,综合性较强。有关圆题的证明 ,大多数都需要添加适当的辅助线 ,以沟通条件与结论之间的内在联系方能获证 ,现根据圆题中不同的已知条图 1件 ,将常见添辅助线的方法归纳为以下几种。一、若题目中有“直径”这一条件时 ,一般作直径上的圆周角 ,利用“直径上的圆周角是直角”这一性质来证明。例 1 如图 1 ,已知AD是△ABC外接圆的直径 ,CF⊥AD交AB、AD于E、F ,求证 :AE·AB =AF·AD。证明 :连结BDAD是直径 ∠ABD =90°CE⊥AD ∠AFE =90…  相似文献   

13.
对任一个三角形 ,有内角平分线定理 :定理 1 在△ABC中 ,∠A的平分线BD交BC于D ,则BDDC=ABAC。对BC上的任一点D (如右图 ) ,因为△ABD与△ADC同高 ,所以 BDDC=S△ABDS△ADC=12 AB·AD·sin∠BAD12 AD·ACsin∠DAC=ABsin∠BADACsin∠DAC。于是 ,有 :定理 2 若D是△ABC的BC内的一点 ,则BDDC=ABsin∠BADACsin∠DAC。显然 ,当∠BAD =∠DAC时 ,定理 2转化为定理1 ,所以说定理 2是内角平分线定理的推广。事实上 ,当D为线段BC的…  相似文献   

14.
定理 H为三棱锥A BCD底面的重心 ,G为AH上的点 ,且 AGAH =k ,△B′C′D′为过G的任一截面 (如图 ) ,则ABAB′ ACAC′ ADAD′=3k .证明 :如图 ,H为△BCD的重心 ,则VA BHC =VA CHD =VA DHB=13 VA BCD.∵ VA B′GC′VA BHC=AB′·AC′·AGAB·AC·AH =VA B′GC′13VA BCD,AGAH=k ,∴ VA B′GC′VA BCD=k3·AB′·AC′AB·AC ,同理可得类似的两个等式 .三式相加 ,有AB′·AC′·AD′AB·AC·AD =VA B′C′D…  相似文献   

15.
我们知道 ,两圆相内切或外切时 ,只有一个公共点 .这时 ,如果过切点作出两圆的公切线 ,构造弦切角 ,从而架设两圆之间的桥梁 ,往往会使问题得到解决 .一、证明两角互补例 1 已知 :两圆外切于点P ,一条割线分别交两圆于A、B、C、D .求证 :∠APD +∠BPC=1 80°.分析 如图 1 ,要证明结论成立 ,只需证∠BPC =∠A +∠D .这时想到过点P作两圆的公切线交AD于点E ,构造出两个弦切角 :∠EPB和∠EPC .从而只需证∠EPB =∠A,∠EPC =∠D .这由弦切角定理可得 .图 1         图 2二、证明两角相等例 2 如…  相似文献   

16.
证明三角形全等一般有下面三种思路.一、两个三角形中,已知两边对应相等,需证出它们的夹角对应相等,或者第三边对应相等.例1已知:如图1,B为AC的中点,BE=BD,∠1=∠2.求证;∠A=∠C.分析显然需证△ABE≌△CBD,已有AB=BC,BE=BD,还需要证明它们的夹角∠ABE=∠CBD,而∠1=∠2,它们的夹角相等是显然的.证明∠1=∠2(已知),∠1+∠3=∠2+∠3(等式性质),即∠ABE=∠CBD.在△ABE和△CBD中,AB=BC,BE=BD,∠ABE=∠CBD,△ABE≌△CBD(SAS…  相似文献   

17.
几何“a2 =bc”型的命题 ,综合性强 ,证法灵活 ,是训练初中学生思维能力的重要题型 ,也一直是中考的“热点” .本文举例说明此类题型常用的证明方法利用共边相似三角形证明     图 1例 1 如图 1,已知⊙O与⊙A相交于B、C两点 ,经过点A ,过A作⊙O的弦AF交⊙A于E ,交BC于D .求证 :AB2 =AD·AF .证明 连结BF ,AC ,∵AB =AC ,∴∠ABC =∠AFB .又∵∠BAD =∠FAB ,∴△ABD∽△AFB ,有   ABAF =ADAB,故  AB2 =AD·AF .2 利用等高相似三角形证明     图 2例 2  …  相似文献   

18.
一、设凸四边形ABCD的两组对边所在的直线分别交于E、F两点 ,两对角线的交点为P ,过P作PO⊥EF于O .求证 :∠BOC =∠AOD .图 1解 :如图 1,只需证明OP既是∠AOC的平分线 ,也是∠DOB的平分线即可 .不妨设AC交EF于Q ,考虑△AEC和点F ,由塞瓦定理可得EBBA·AQQC·CDDE=1.①  再考虑△AEC与截线BPD ,由梅涅劳斯定理有EDDC·CPPA·ABBE=1.②  比较①、②两式可得APAQ=PCQC.③过P作EF的平行线分别交OA、OC于I、J ,则有PIQO=APAQ,JPQO=PCQC…  相似文献   

19.
一、1.B  2 .D  3.B  4 .C  5 .D  6 .D  7.A 8.C  9.C  10 .B二、11.1∶ 3∶2  12 .3cm  13.5 7  14 .1∶ 2  15 .5 0  16 .117  17.2 2  18.6 0°  19.15  2 0 .内切三、2 1.作AD =AD′ =1,连结OD ,OD′ .则△OAD和△OAD′为等边三角形 ,有∠OAD =∠OAD′ =6 0° .连结OC ,可求得∠OAC =4 5° .所以 ,∠CAD =6 0°± 4 5° ,即 ∠CAD为 10 5°或 15° .2 2 .∵FG与⊙O相切 ,∴FG2 =FB·FC .∵FE =FG ,∴FE2 =FB·FC .有 FEFB=FCFE.又 ∠EF…  相似文献   

20.
命题 设△ABC的面积为△ ,三边长分别为a、b、c.则△ABC的内接正三角形的最小面积为 △236(a2 +b2 +c2 ) + 2△.图 1证明 :如图 1所示 ,正△PQR内接于△ABC ,BC =a ,CA=b ,AB =c.设∠BRP =θ,则易求得∠PQC =∠A+ 60° -θ .再设△PQR的边长为x ,则分别在△BRP和△PQC中 ,由正弦定理可得BP =sinθsinBx ,PC =sin(∠A + 60°-θ)sinC x.又因BP +PC =BC =a ,故x = asinθsinB+sin(∠A +6 0° -θ)sinC=asin(∠A +6 0°)sinC ·cosθ+…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号