首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱所成的锐角分别为θ_1和θ_2且θ_1,θ_2具有公共边,则有: cosθ=cosθ_1cosθ_2 sinθ_1sinθ_2cosφ。当φ=90°时,公式为cosθ=cosθ_1cosθ_2。证明: 如图,∠BAC=θ,∠BAO=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=α,  相似文献   

2.
正1、如图:已知二面角α-MN-β,A∈MN,AB(?)α,AC(?)β,设∠BAN=θ_1,∠CAN=θ_2,二面角α-MN-β的大小为θ_3,∠BAC=θ,那么cosθ=cosθ_1cosθ_2+sinθ_1sinθ_2cosθ_3证明:如图(一)1°、当θ_1、θ_2均为锐角时,在AB上取一点E(异于点A),在平面α内作EG⊥MN,垂足为G,在平面β内作GF⊥MN  相似文献   

3.
文[1]P48三夹角与距离中证明了命题:如图1,设OA,OB,OC是三条不共面的射线(即三面角),∠AOB=θ1,∠COB=θ2,∠AOC=θ3,二面角A-OB-C为直二面角(即平面AOB⊥平面BOC),则有公式cosθ3=cosθ1·cosθ2①.  相似文献   

4.
苏教版《数学课课练》高二下册第17课时例1:已知:∠AOB=90°,过点O引∠AOB所在平面的斜线OC与OA,OB分别成45°,60°角,求二面角A-OC-B的余弦值.图1本题是在已知三个面角∠AOB,∠AOC,∠BOC的条件下,利用二面角的定义求二面角A-OC-B的余弦值.若将本题中的三个面角由特殊推广到一般,设∠AOB=θ1,∠AOC=θ2,∠BOC=θ3,二面角A-OC-B为θ,则有如下结论:cosθ=cosθs1i-nθc2o·ssθi2n·θc3osθ3.证明在OC上取一点D,使OD=1,过点D分别在面AOC,面BOC内作DE⊥OC,DF⊥OC,DE,DF分别交OA,OB于E,F,连EF,则∠EDF为二面角…  相似文献   

5.
如图,AB 和 CD 是四面体 ABCD 的一双对棱。为叙述方便,我们约定:棱 AB 所在的二面角的平面角为θ1,∠ACB=α_1,∠ADB=3_1;棱 CD 所在的二面角的平面角为θ_2,∠CAD=α_2,∠CBD=β_2。在四面体 ABCD 中,如上所述的八个元素(两条棱、六个角)之间存在着十分密切的联系。本文揭示出其中的两个关系式,并简单介绍它们在解题中的实际应用。定理一四面体 ABCD 中,AB/(sinθ_1 sinα_1 sinβ_1)=CD/(sinθ_2 sinα_2 sinβ_2)。证明:如图,过四面体 ABCD 的顶点  相似文献   

6.
一、三余弦公式及其推论三余弦公式:如图1,PO⊥平面α于O,PA∩α=A,ABα,直线AP与AB成θ角,AP与AO成θ1角,AO与AB成θ2角,则有cosθ=cosθ1cosθ2.证明:如图1,作OB⊥AB于B,连结PB,则PB⊥AB,∠PAB=θ,∠PAO=θ1,∠OAB=θ2,设|PA|=1,则|AO|=cosθ1,|AB|=|AO|cosθ2=cosθ1cosθ2,又|AB|=cosθ,所以cosθ=  相似文献   

7.
立体几何命题中,求二面角的值是一种常见而且重要的问题。一般的做法是先找出二面角的平面角再计算。本文拟给出一个直接求二面角的公式,并讨论一些相关问题。 定理 设二面角M-AB-N的大小为a,P∈AB,D∈平面N,C∈平面M,∠CPB=θ_1,∠DPB=θ_2,∠CPD=θ,则有 cosθ-cosθ_1cosθ_2 证明:如图1,作AB的垂面,分别交PC、AB、PD于C、E、D.则∠CED=a,∠CEP=∠DEP=90°.设PE=x,从而有PC=xsecθ_1,EC=xtgθ_1,PD=xsecθ_2,DE=xtgθ_2. 在△PCD与△ECD中,分别用余弦定理求CD~2,得整理得 应用此定理便可直接求出二面角的值,请看下面的例子。  相似文献   

8.
本刊1990年第3期刊登的《一道值得重视的立体几何习题》一文,介绍了习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_1,设∠BAC=θ,求证 cosθ_1cosθ_2=cosθ(*)~n的结论的广泛应用,读后颇受启发。但美中不足的是(*)式没有涉及二面角,如图1,若在α内过B′作B′D⊥AC,D为垂足,则  相似文献   

9.
如图1,P为平面α外一点,PO⊥α,O为垂足,直线l<α,点P与直线l确定平面为β,点B∈l,设PB与平面α所成的角∠PBO=θ1,与l所成的角∠PBA=θ,二面角α-l-β的平面角∠PAO=φ.下面我们来研究θ1、θ、φ之间的关系.在Rt△POB中,sinθ1=PPBO.在Rt△POA中,sinφ=PPAO.在Rt△PBA中,sinθ=PPBA.因为PPBO=PPAO·PPBA,所以sinθ1=sinφ·sinθ在上述公式中,因为0相似文献   

10.
定理椭圆ax22 yb22=1上任意一点P,A为椭圆的右顶点,∠AOP=θ,设OP=r,则1r2=coas22θ sibn22θ.证明:设点P的坐标为(x,y),则x=rcosθ,y=rsinθ.代入椭圆方程得:(rcoas2θ)2 (rsibn2θ)2=1.所以r12=coas22θ sibn22θ.推论1椭圆xa22 yb22=1,经过原点且互相垂直的两射线与椭圆交于两点P、M,设OP=r1,OM=r2,则r112 r122=a12 b12.证明:设A为椭圆的右顶点,∠AOP=θ,∠AOM=β,由引理得:r112=coas22θ sibn22θ,1r22=coas22β sibn22β.因为OP⊥OM,所以cos2θ=sin2β,sin2θ=cos2β.所以r121 r122=a12 b12.类似可以证明.推论2双曲线xa22-by…  相似文献   

11.
题目设∠XOY=90°,P为∠XOY内的一点,且OP=1,∠XOP=30°,过点P任意作一条直线分别交射线OX、OY于点M、N.求OM ON-MN的最大值.(2004,IMO中国国家集训队选拔考试)图1解:如图1,设∠PMO=θ(0°<θ<90°),则OM ON-MN=32 12cotθ 12 32tanθ-12sinθ-32cosθ.令tanθ2=t∈(0,1),则OM  相似文献   

12.
空间几何体的基本结构是三面角,对于三面角,我们有: 定理:在三面角P-ABC中,若以PB为棱的二面角是直二面角;记∠APB=θ_1,∠BPC=θ_2,∠APC=θ,以PA、PC为棱的二面角分别PA、PC, 则:  相似文献   

13.
统编高中数学第二册P_(100)第九题,如图,AB和平面a所成的角是θ_1,AC在平面a内,AC和AB的射影AB成角θ_2,设∠BAC=θ,则 cosθ=cosθ_1·cosθ_2(*) 其证明不难,但运用有一定的广泛性。兹举凡例说明之。例1:已知一个直角三角形的两直角边长为a、b,把它沿斜边上的高折成直二面角,求两边夹角的余弦  相似文献   

14.
《立体几何》(全一册)117页第3题(如图1)有这样的结论:cosθ=cosθ1cosθ2若设则该结论可改写为即二面角(A—BC——D)一个而内,从棱上一点出发的射线与另一个面所成角的正弦等于这条射线与棱所成角的正弦和该二面角的平面角的正弦的乘积.这一公式反映了立体几何?..  相似文献   

15.
在高中立体几何课本中,有一道习题如下:如图,AB和平面a所成的角是θ_1,AC在平面a内,AC和AB的射影AB′成θ_2角,设∠BAC=θ,求证:cosθ=cosθ_1cosθ_2 (1) 运用公式(1),需具备如下条件: 在三面角中,若两个面角所在的平面成直二面角,那么它所对面角的余弦等于这两个面角的余弦之积。公式(1)是球面三角中三面角余弦定理的特殊情  相似文献   

16.
本刊90年3期《一道值得重视的立体几何习题》、92年2期《一个值得重视的二面角公式》讨论了立体几何中的一个习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1cosθ_2=cosθ”的应用和推广,很有教益,也非常重要。笔者认为,这习题之所以重要,不是没有涉及二面角,而是把直二面角的存在与面角的计算公式:  相似文献   

17.
证法 1 如图1,设∠BAD=α,∠ CAD=β(0 <α,β <π2 ) ,过 B作BD⊥ AD交 AC于C,则有cosα=ADAB,cosβ=ADAC.又∵S△ B A C=S△ B A D+S△ D A C,∴ 12 · AB· AC· sin(α+β) =12 AB·AD· sinα+12 AD· AC· sinβ.两边同时除以 12 AB·AC,可得sin(α+β) =ADAC·sinα+ADAB· sinβ=cosβ· sinα+cosα· sinβ.运用诱导公式 ,易证α,β不是锐角时 ,式子仍然成立 .图 2证法 2 如图2 ,设∠BAD=α,∠DAC=β(0 <α,β <π2 ) ,作 BD⊥AD交 AC于 C,作BE⊥ AC于 E,则有 ADAC=cosβ,BDAB=sinα,ADAB=…  相似文献   

18.
一些书刊上有这样的一道题与其解法: 过二面角a—l—β内一点P分别作PA⊥平面a、PB⊥平面β,点A、B为垂足,已知∠APB=60°,PA=a,PB=b,求点P到二面角的棱l的距离。 [解]:如图.过PA、PB作平面γ,设它与二面角的棱l交于Q,连结AQ、BQ和PQ。  相似文献   

19.
一、构造函数例1设α、m为常数,θ是任意实数,求证:眼cos(θ+α)+mcosθ演2≤1+2mcosα+m2.证明构造函数y=f(θ)=1+2mcosα+m2-眼cos(θ+α)+mcosθ演2,则只需证明y≥0即可.f(θ)=sin2(θ+α)+2m眼cosα-cosθcos(θ+α)演+m2sin2θ.令sin(θ+α)=x,则得二次函数y=x2+2msinθ·x+m2sin2θ.由于Δ=4m2sin2θ-4m2sin2θ=0,且二次项系数为1,故y≥0,即原不等式成立.二、构造数列例2已知:sinφcosφ=60169,π4<φ<π2,求sinφ、cosφ的值.解由题意可知,sinφcosφ=(215姨13)2且sinφ>cosφ,构造等比数列cosφ,215姨13,sinφ.设sinφ=215姨13·q,c…  相似文献   

20.
众所周知,在三角形中有正弦定理、余弦定理、射影定理,它们揭示了三角形中边角间的重要关系.这三个定理联系紧密,并可互相推出.在四面体中,也有类似的三个定理,它们表示了面角与二面角之间的关系,当然也可彼此互推. 在四面体O-ABC中,设三个面角分别为α、β、γ,对应的二面角分别为θ-α、θ-β、θ-γ,(如图1)则有 定理1 cosα=cosβ·cosγ sinβ·sinγ·cosθ_α cosβ=cosα·cosγ sinα·sinγ·cosθ_β cosγ=cosα·cosβ sinα·sinβ·cosθ_γ 证明 利用有关射影的定理:(1)平面上折线的各边射影之和等于封闭线段在射影轴上的射影.(2)直线在轴上的垂直投影等于被投线段的长度乘以该线段和轴的交角的余弦.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号