首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
由三角形三边表示面积公式S=(p(p-a)(p-b)(p-c))~1/2(1),其中a,b,c是三角形三边的长,p=1/2(a+b+c),并记S为面积。 (1)式就是著名的秦九韶——海伦公式。我国宋秦九韶编撰的《数书九章》一书的卷五中曾载过“三斜求积”,它就是根据三角形三边求三角形的面积的问题。本文曰:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步,欲知为田几何”答曰:“面积二百一十五顷”如图1  相似文献   

2.
初中代数课本第四册,P_(166),17题:“三角形面积公式:S_△=(s(s-a)(s-b)(s-c))~(1/2)其中s=1/2(a+b+c),a,b,c是三角形三边的长,”这个“公式”远在古希腊阿基米德就知道,后由希腊人海伦(Hero)(生于公元前125年)在他的著作“Merprka”一书的“度量表”章中首先证明了这一公式,还举了求边为13,14,15之三角形面积一例。在与世隔绝的中国南宋时期(约公元1247年),数学家秦九韶,在他的《数学九章》中曾独创地讨论到它,名为“三斜求积”,大斜、中斜、小科分别表示三角形三边,求面积。把他的结论用现代算式表示是:  相似文献   

3.
本文将三角形面积的海伦-秦九韶公式S=(√p(p-a)(p-b)(p-c))(a,b,c为△ABC的三边长,p为半周长,p=a+b+c/2)推广到四边形中,并给出其应用.  相似文献   

4.
题设△ABC 的三边和面积分别为 a、b、c 和△,则a~2b~2 b~2c~2 c~2a~2≥16△~2 (1)文[1]中利用海伦公式给出几何证明.笔者经过探索,发现把(1)式转化成三角不等式来证明,不仅简捷,而且可以获得多种证法.证由三角形面积公式,(1)式等价于  相似文献   

5.
初中数学中所涉及的三角形面积求法很多,灵活地运用会收到事半功倍的效果,下面列举几例供读者参考.方法1:我国古代数学家秦九韶在《算术九章》中记述了"三斜求积术",即已知三角形的三边长,求它的面积,用现代式子表示即为:S=(?)(其中a,b,c为三角形的三边长,c为最长边,S为面积.)而另一个文明古国古希腊也有求三角形面积的海伦公式:S=(?)(其中p=(a+b+c)/2.)  相似文献   

6.
众所周知,给出三角形的三边a、b、c的长,三角形的面积S就可用秦九韶公式或海伦公式求出。如果三角形的三边a,b,c都是自然数,由于以上两个面积公式都带有根号,所以求出的面积未必是自然数。特别当三边为连续自然数时,面积也未必是自然数。本文要解决的问题是:三角形的三边是怎样的连续自然数时,面积也是自然数,并求出一切这样的三角形。  相似文献   

7.
众所周知 ,每个数学分支的形成 ,都有其深刻的数学背景 ,每个数学结论的给出 ,都有其坚实的数学依据 ,数学公式的产生当然也不例外 .海伦 (Heron)公式公元 1世纪 ,希腊数学家海伦在其所著《度量论》一书中给出一个用三角形三边表达三角形面积的著名公式———海伦公式 :若a、b、c为三角形三边长 ,则该三角形面积为S =p(p-a) (p -b) (p -c) .这里 ,p=12 (a +b +c)表示三角形半周长 .这个公式简洁、对称 ,极具美感 ,深深揭示数学之美、数学之妙[1] .据称《度量论》一书曾一度失传 ,直至1 896年舍内 (R .Sch ne)在土耳其发现了它的手抄本后 ,…  相似文献   

8.
海伦公式即三角形面积公式:S△=√s(s-a)(s-b)(s-c),其中s=1/2(a+b+c),a,b,c是三角形三个边的长,这个公式远在古希腊阿基米德就知道,后由希腊人海伦(Heron)(生于公元前125年)在他的著作《测量术》(metrica)一书的“度量表”章中首先证明了这一公式,还举了求边为13,14,15之三角形面积一例。  相似文献   

9.
海伦三角形     
已知△ABC的三边长a=13,b=14,c=15,由海伦公式可以求得△ABC的面积S=84.这种三边长为连续整数,面积也是整数的三角形叫做"海伦三角形". 除上述三角形外,三边长a=3,b=4,C=5的三角形也是海伦三角形(面积为整数6). 要想再找出几个海伦三角形,这可能很困难.要找  相似文献   

10.
文[1]介绍了魏岭伯克不等式的六种证法.在第三种证法中,用到了海伦公式和两个重要不等式.笔者认为,如果在介绍这种证法之后,再介绍利用秦九韶公式的证明,进行对比,就更好了. 设△ABC的边长和面积分别为a、b、c  相似文献   

11.
本文通过斯特瓦特定理推导出三角形三边中线平方和的公式,借助于三角形的中线长不小于该边上的高,进而推导出三角形面积与三边长的不等式S≤/3/4./a2+b2+c2/1/a2+1/b2+1/c2,该不等式较Weitzenb6ck不等式S≤1/4/3(a2+b2+c2)确定的△ABC面积的上界要小.在推导该不等式的同时也给出了Weitzenbock不等式的一种新的证明方法.  相似文献   

12.
提到海伦公式S_△=(s(s-a)(s-b)(s-c))~(1/2),我们并不陌生。初中代数第四册166页,有关于它的习题:《教学参考书》157页,有关于它的证明。但提到中国的海伦公式——秦九韶公式,由于中学教材没有作介绍,恐怕就没那么熟悉了。秦九韶公式,是我国南宋时期的数学家秦九韶,在他的著作《数书九章》中独立提出来的(距今有740多年)。在这部书中,他详尽地叙述了利用“三斜”(即三边)求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积。”这段文字用现代公式表示,就是 S_△=(1/4[c~2a~2-((c~2+a~2+b~2)/2)~2])~(1/2) 秦九韶公式与海伦公式都是已知三边求三角形的面积,形式各异而实质相同。虽然它较海伦公式提出得晚一些,但却是秦九韶独立发现的,这就十分可贵了。所以人们亲切地称秦九韶公式是“中国的海伦公式”,还把它与海伦公式合并称为“海伦——秦九韶公式”。  相似文献   

13.
本文通过斯特瓦特定理推导出三角形三边中线平方和的公式,借助于三角形的中线长不小于该边上的高,进而推导出三角形面积与三边长的不等式S≤√3/4·√a2+b2+c2/1/a2+1/b2+1/c2,该不等式较Weitzenb(o)ck不等式S≤1/4√3(a2+b2+c2)确定的△ABC面积的上界要小.在推导该不等式的同时也给出了Weitzenb(o)ck不等式的一种新的证明方法.  相似文献   

14.
海伦公式,即三角形面积公式:S△=√s(s-a)(s-b)(s-c),其中s=1/2(a+b+c),a、b、c是三角形三个边的长.远在古希腊时的阿基米德就知道这个公式,后来由希腊人海伦(Heron)(生于公元前125年)在他的著作《测量术》(metrica)一书的“度量表”一章中首先证明了这一公式,还举了求边长13、14、15之三角形面积一例.  相似文献   

15.
文〔〕将Polya—Szego不等式加细得到一个不等式链:(其中a、b、c,△分别表示△ABC的三边长及面积,下同).此不等式链可进一步加细为:则x、y、z均为正且有于是有从而得根据A-G不等式即得:又据与海伦公式得:因此,式成立且由证明过程易知等号当且仅当a=b=c时取得.也谈Polya-Szego不等式的加强@李同林$江苏溧水石湫中学[1] 裘良,《Polya—Szego不等式的加强》,《中学数学》(苏州大学)1994年第4期。 [2] 李同林,《与莫勒三角形有关的一个不等式》,《福建中学数学》1993年第5期。…  相似文献   

16.
周奕生 《中学生电脑》2006,(10):I0013-I0014
设Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,记三角形的半周长为p,即p=12(a b c),△ABC的面积为S,则由勾股定理及直角三角形面积公式,可得S=p(p-c)=(p-a)(p-b).(*)公式(*)成立的理由是:S=21ab=41×([a b)2-(a2 b2)]=41[a b)2-c2]=14(a b c)(a b-c)=41×2p×2(p-c)=p(p-c);另一方面,由海伦公式S=#p(p-a)(p-b)(p-c)得S2=(p-a)(p-b)(p-c)=S(p-a)(p-b),故S=(p-a)(p-b).公式(*)结构和谐优美,简单易记,与海伦公式相比较体现了直角三角形的特殊性,在解直角三角形有关问题时,运用公式(*)别具一格,富有情趣。例1已知直角三角形…  相似文献   

17.
安振平在本刊1986年第6期P42上改进了一个常见的三角形不等式,得到:设a、b、c是△ABC的三边长,2p=a+b c,则本文将把(1)式推广到两个三角形.设a、b、c、p与a’、b’、c’、p’分别是△ABC与△A’B’C’的三边长及半周长,则证在简单不等式(可见于高中代数课本(必修)下册Pll练习)(其中,a、b、c为正数)中用a’(p-a)、b’(p-b)、c’(p-c)分别替换a、b、c,得类似可得以上两式相加,再运用平均值不等式,便知(2)式成立。且易知式中等号当且仅当两三角形均为正三角形时成立.证毕.令a’=a,b=b,c’=c,则(2)式成…  相似文献   

18.
平面几何中,有一个叫做海伦——秦九韶的三角形面积公式 S_△=(p(p-a)(p-b)(p-c))~(1/2), 其中a、b、c是三角形三边的长,p是周长的一半。有趣的是,在立体几何中,也有一个与之相类似的四面体体积公式 V四面体=1/3abc··(sinωsin(ω-α)sin(ω-β)sin(ω-γ))~(1/2),①其中a、b、c是共顶点的三条棱的长,α、β、γ是相邻棱组成的面角,ω是这三个面角和的一半。公式①的证明: 设四面体M—ABC中,MA=a,MB=b,MC=c,∠AMB=α,∠BMC=β,∠CMA=γ。作BO⊥平面MAC,垂足为O。作OA′⊥MA,垂足为A′。作OC′⊥MC,垂足为C′。连结BA′、BC′,则BA′⊥MA,  相似文献   

19.
若已知任一△ABC的三边长为a,b,c,则其面积可表示为A=√s(s-a)(s-b)(s-c),其中s=a+b+a/2,此即海伦公式.关于海伦公式的证明,笔者已在文[1]中给出了中外数学史上的有关证明方法.分析发现,历史上的证法均为几何证法(添加辅助线,利用全等三角形的边、角关系或者相似三角形中的比例关系进行推导),各种方法堪称精巧美妙,但略显复杂.本文拟给出海伦公式的一个代数证法.  相似文献   

20.
若已知三角形的三边长为a、b、c,求三角形的面积,则可用海伦公式 S=√p(p-a)(p-b)(p-c)(其中p=2^-a+b+c),在梯形中,若已知四边长,也可求出梯形的面积.现介绍如下:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号