首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文中均设(X,d)是一完备的度量空间,T,S是X→X的映象对,在O_T(X;0,∞)={x_a=T~(?)x}_(?)~∞=0(这里{x_(?)=T~(?)x}是迭代序列)称为T在x处生成轨道;记δ(O_r(x;0,∞))=Supd(T~(?)x,T~(?)x)称为0_r(x;0,∞)的直径.设对每一对x,y∈X,δ(O_r(x;0,∞)UO_(?)(y;0,∞))是有界的.称函数φ(t)满足如下条件叫做满足条件(φ_1):φ:[0,∞)→[0,∞)对t是不减和右连续的(即设{t_a}是非负值的单调减的序列,当t_a→t时,就有φ(t_(?))→φ(t))而且对每—t>0,有φ(t)0,φ~n(t)→0(n→∞),这里φ~n(t)表φ(t)的n次迭代函数.2°任一满足下面条件的非负实数列{t_(?)}_(?)~∞(?)  相似文献   

2.
设(X、d)是一完备的度量空间,T是X的自映射,n:X一I (正整数集),常数入〔(o、l),对一切x,y〔X,成立d(T·‘X,X,Tn‘x’,)、入m二{‘(X、;) d(y,Tnl‘)v),’ d(y,T·(矛’戈)一},d(x、T”(x)二)d(x,T“(xl),),(一)d(Tn(·’X,T·‘·,,)相似文献   

3.
设X,Y是两个实Banach空间,且ε>0,映射f:X→Y称为标准ε-等距,如果|||f(x)-f(y)||-||x-y|||≤ε,x,y∈X,且满足f(0)=0,称一对Banach空间(X,Y)是稳定的.如果存在r>0,使得对任意标准的ε-等距f:X→Y都存在一个有界线性算子T:L(f)≡spanf(x)→X,使得||Tf(x)-x||≤rε,x∈X,ε>0.本文主要讨论了光滑的Banach空间X及其子集楔与锥上的弱稳定性问题,并给出了部分应用.  相似文献   

4.
函数空间是学习代数拓扑的基础。深入研究函数空间对进一步学习拓扑有着重要意义。本文在映射空间中推广E~*~开拓扑和一致收敛拓扑,引进了E~*~F~*拓扑和紧一致收敛拓扑,并对映射空间的几个定理做了一些扩展。 一、E~*~F~*拓扑 若X、Y为集合,任取E(?)X,B(?)Y,记, W(E,B){f:X→Y,f(E)(?)B} G(E,B)=、{f:X→Y,f(E)(?)B,且f连续}。 定义1 设X为非空集合,Y为拓扑空间,E~*为X的子集簇,F~*为Y的子集簇,且Y∈F~*,则Y~x的子集簇 ψE·(?)={W(E,F):E∈E~*,F∈F~*}的并为Y~x,故有唯一拓扑为T_(E·(?))~*以ψ_(E·(?))为子基,T_(E·(?))~*称为Y~x的E~*~F~*拓扑。 设X、Y为拓扑空间,记Ω(X,Y)为从X到Y的所有连续映射的集合,因而Ω(X,Y)(?)Y,Ω(X,Y)作为Y~x(E~*~F~*拓扑)的子空间称为连续映射空间(E~*~F~*拓扑)。 引理1 若有F∈F~*有Y—F∈F~*,则G(E,F)为Ω(X,Y)关于E~*~F~*拓扑的既开又闭的子集。 证明:因为E∈E~*,F∈F~*,有  相似文献   

5.
5、广义拟变分不等式 定理5.1 设E,F都是Hausdorff拓扑线性空间,F局部凸(F~o分离F的点),XE是非空仿紧闭凸集,YF非空凸,S:X→2_Y上h一半连续且具非空闭(紧)凸值,T:Y→X是可逆的,保凸的和开的,P:Y→2~(F~o)单调具非空值且对任一一维线段∠F,P│∠∩Y由F的拓扑到F~o的弱~o拓扑下半连续,再设 (i)△_o={x∈X:sup sup Re(u,T~(-1)x-y)>0)}是X的相对开集, y∈S(x) u∈P(y) (ii)存在y_o∈Y及E的非空紧子集KX使得 inf Re(w,T~(-1)x-y_o)>0,y_o∈S(x),x∈X/K w∈P(T~(-1)x) 则存在∈X使得T~(-1)∈S且 sup Re(u,T~(-1)-y(≤0,y∈S(5.1) u∈P(T~(-1)) 证令φΨ:XxY→R, φ(x,y)=sup Re(u,T~(-1)x-y),Ψ(x,y)=inf Re(w,T~(-1)x  相似文献   

6.
1 从函数的角度谈 1.1 函数的定义 设X,Y为非空集,若有一个法则f,使得集合X中的任一元素x,都有且仅有Y中的一个元素y与之对应,就称f是一个X到Y的函数(或映射),并记作: f:X→Y或f=f(x)我们称y为x的函数(或在映射f之下x的象;相应地,称x为在映射f之下y的原象),x称为自变量,集合X被称为函数f的定义域,并记为D_f=X,显然,函数f的函数值都属于集合Y,但并不一定集合Y的每一个元素必定是某个x∈E的函数值,把X的所有元素的函数值组成的集合称为函数f的值域,记为R_f R_f={y|y=f(x),x∈X}它是Y的一个子集,即R_rY,也称Y为值域包。 1.2 怎样确定一个函数 根据函数的定义,确定一个函数,要做到以下四点:  相似文献   

7.
§1.前言设(X,d)是一完备的距离空间,设T是X的自映象。T称为膨胀映象(称为第1类膨胀映象),如果存在常数h>1,使得 d(Tx,Ty)≥hd(x,y) x、y∈X。关于膨账映象不动点定理的研究,1967年最先开始于Machuca。以后不少数学工作者先后讨论了一些其他形式的膨胀映象的不动点定理,这些定理统称之为膨胀映象的不动点定理。  相似文献   

8.
一、选择题(每小题5分,共60分)1·设集合M={x|x2 y2=1,x∈R,y∈R},N={y|y=x,x∈R},则集合M∩N等于()A·{-22,22}B·{(-22,-22),(22,22)}C·{x|-22≤x≤22}D·{y|-1≤y≤1}2·复数3-i(1 3i)2的虚部为()A·-21B·-21iC·-41D·-41i3·已知函数f(x)=2x 1的反函数是f-1(x),则f-1(x)  相似文献   

9.
设X是(实或复)域K上的赋范线性空间,M是X的闭线性子空间,令P_M(x)={m∈M;、||x-m||=d(x,M)},则称PM为x到M上的度量投影,耳中d(x,M)=inf||x—y||是x到M的距离, M称为可最佳逼近(Chebyshev)的,若对x∈X,P_M(x)至少含且仅含一点,若M是可最佳逼近的,定义 P_M的范数为 ||P_M||=sup{||b||:b∈P_M(x),且||x||,且||x||≤1} 易知1≤||P_M||≤2,我们主要有下列结果: 命题1 设X是自反Banach空间,M是Chebyshev子空间,PM线性,则||P_M||<2。 命题2 设M是e_p(或L_p)的闭子空间,则当p≥2时,||P_M||≤1+1/2~(1/p);当1相似文献   

10.
一、选择题(本大题共12小题,每小题5分,共60分)1.(理)设M=znz=-12+3i,n∈N,P=zmz=1+i2,m∈N,则M∩P中的元素有()(A)无数个(B)2个(C)1个(D)0个(文)设M={x|1-2}的(B){x|x<3}(C){x|1相似文献   

11.
§3.连续参数有限马民链的大偏差. 设T=[0,∞],X={x_t;t∈T}是取值于E={1,2,…,d}的马氏过程.设齐次转移半群为{x(t)=(x_(ij)(t))d×d}。本节主要是讨论X的经验分布的大偏差性质及其速率函数的估值。  相似文献   

12.
证明了对任意的统计测度μ∈T,令Iμ={A■N∶μ(A)=0},则Banach空间X中的序列{xn}统计收敛于x等价于{xn}理想Iμ收敛于x。再设I任一严格理想,X1=span{χA∶A∈I}l∞,UI={μ∈F,μ(A)=0,A∈I},则UI≌X⊥I,进而XB≌c0。  相似文献   

13.
给出了两种求广义结合BCI_代数商代数的十分方便的方法 ,即 :设H为广义结合BCI_代数X的子代数 ,(1 ) x∈X ,令xH ={x h|h∈H} ,X/H ={xH|x∈X} ,定义xH yH =(x y)H ,则 (X/H ; ,0H)是广义结合BCI_代数 ;(2 ) x∈X ,令Hx={ (x h) h|h∈H} ,X/H2 ={Hx|x∈X} ,定义Hx Hy=Hx y,则 (X/H2 ; ,H0 )是广义结合BCI_代数 .  相似文献   

14.
将实线段上连续自映射的w-极限点集和几个周期点集推广到度量空间中,得出两个结果:(1)设X是序列紧度量空间,f:X→X是连续的一一映射,如果y∈X是f的w-极限点,则n∈N+,都存在f的w-极限点x0∈X,使得fn(x0)=y;(2)在度量空间中,周期点集与终于周期点集的并集等于准周期点集.即P(f)∪E′P(f)=EP(f).  相似文献   

15.
运用分析的方法 ,简化了线段上的连续自映射的Li_Yorke混沌定义 :设f是线段I到自身的连续自映射 ,若存在I中不可数子集S , x ,y∈S ,使得 :(B1)limn→∞|fn(x)-fn(y) | >0 ;(B2 )limn→∞|fn(x) -fn(y) | =0 ;其中x≠y ,f0 (x) =x ,f1(x) =f(x) ,… ,fn 1(x) =f(fn(x) ) ,n∈N ,则f是Li_Yorke混沌的 .从而使得该定义更加简单明了  相似文献   

16.
代数 1.设Ⅰ=R,子集P={x|f(x)=0 },Q={x|g(x)=0},H={x|h(x)=0}则方程f~2(x) g~2(x)/h(x)=0的解集是( ) (A)P∩Q∩H (B)P∩Q (C)P∩Q∩H (D)P∩Q∪H 2.已知集合A={(x,y)|x y=1},映射f:A→B在f的作用下,点(x,y)的象是(2~X,2~y),则集合B是( ) (A){(x,y)|x y=2,x>0,y>0} (B){(x,y)|xy=1,x>0,y>0} (C){(x,y)|xy=2,x<0,y<0} (D){(x,y)|xy=2,x>0,y>0} 3.y=x~n(n∈Z)的图象只分布在第一、二象限,则n的集合一定是( ) (A)正偶数集合 (B)负偶数集合 (C)偶数集合 (D)以上都不是 4.函数y=2~x-1/2~x 1 ιn(x-1)/(x 1)是( ) (A)偶函数但不是奇函数  相似文献   

17.
本文由置换f的有向图G_f的定义得到了G_f的一个本质特征,从而得到了置换的轮换分解定理.定义了无向图(X,T),利用图论中“树”的结论,给出了置换的对换分解的一般定理.我们知道所有的n阶置换组成一个群S_n,称为n次对称群.设f∈S_n,可按下法定义一个有向图G:它的顶点集X={1,2…,n}的对于x,y∈X,当且仅当y=f(x)时,有从x指向y的弧(x,y).G_f称为置换的有向图.由于f是置换,所以在每一顶点i处,恰有一条出弧和入弧.反之任何一个n阶有向图G,如果每个顶点都恰有一条出弧和入弧也一定表示一个置换f:f(x)=y的充要条件是有x指向y的弧(x,y).  相似文献   

18.
<正>§1 引言 设X、Y为线性赋范空间,记V(X→Y)为X到Y的线性有界算子全体。记X~*为X上有界线性泛函的全体。对于空间V(X→Y)及X~*,通常定义了如下三种形式的收敛性: 设T_n,T∈V(X→Y),则 ⅰ) 当 ||T_n-T||→0 (n→∞),称{T_n}一致收敛于T,记为:T_n→T。 ⅱ) 若对任意的x∈X,||T_nx-Tx||→0 (n→∞),称{T_n}强收敛于T,记为:T_n(强→)T。 ⅲ) 若对任意x∈X及任f∈Y~*,f(T_nx)→f(Tx)则称{T_n}弱收敛于T。记为:  相似文献   

19.
设 { Ei∶i∈I}是一族 Riesz空间且 E= i∈ I Ei 是 Riesz乘积空间 .关于 Riesz子空间、理想、带、(主 )投影性质、正算子和 Riesz同态 ,指出 E与每一个因子空间 Ei 之间的一些关系 .当 E=C(X)和 Ei=C(Xi) (X和 Xi 为实紧空间 )时 ,还得到 E上 Riesz同态和极大理想的表示形式  相似文献   

20.
在本文,我们得到下列结果 1.设T是完全非正常的协亚正常算子,且具单位延拓性质,假设D=TT~*-T~*T满足:是闭的。若△是闭园盘且△°∩σ(T)≠φ,则存在非零元x∈H使得σT(X)(?)△。 2.设T是θ一类算子,则T有单位延拓性质,若T满足σ(T)∩R′=φ,则谱子空间X_T(δ)是闭的,这里δ是C的闭子集,且T有非平凡的不变子空间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号