首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
勾股定理揭示了直角三角形三边之间的关系.它不仅在几何计算中有着广泛的应用,而且在几何证题中也有广泛的应用.因为勾股定理确定的是直角三角形三边平方之间的关系,所以,在几何证题中,凡涉及线段平方的和差关系或线段平方与线段积的和差关系的几何命题,都可以考虑应用勾股定理来加以证明.例1如图1,在△ABC中,/C=90°,D、E分别是BC、AC上的点.求证:AB2+DE2=AD2+BE2分析求证结论是线段平方的和差关系,而且给定图形中有好几个直角三角形,因此,宜考虑应用勾股定理来证明.在Rt△ACD和Rt…  相似文献   

2.
勾股定理是平凡中的重要定理,应用十分广泛.本文专门介绍它在几何计算中的应用.由于题目中的条件不同,用法也不相同,那么我们怎样用好定理呢?一、根据条件直接用定理这类题目很多,仅举一例供大家体会.例1如图,在Rt△ABC中,ACB=90°,CDAB于D.若AB=13,CD=6,求AC+BC的长.解在Rt△ABC中,由勾股定理得AC2+BC2=AB2.AB=13,AC2+BC2=AB2=132=169.CDAB, S△ABC=AC·BC.由面积关系,得AC·BC=AB·CD=13×6=78.(AC+B…  相似文献   

3.
勾股定理及其过定理是几何中十分重要的两个定理,它们在解题中应用比较广泛.现举几例说明它们在几何解题中的综合运用.一判断三角形形状例1如图1,在△ABC中,AD是高,且AD2=BD·CD.求证:△ABC为直角三角形.证明在△ABD和△ACD中,由勾股定理得AB2=BD2+AD2,AC2=AD2+CD2AB2+AC2=BD2+2AD2+CD2.AD2=BD·CD,AB2+AC2=(BD+CD).即AB2+AC2=BC2.根据勾股定理的逆定理知△ABC为直角三角形.二求角度例2如图2,ABBC,CDA…  相似文献   

4.
直角三角形两直角边a、b的平方和,等于斜边c的平方,即a2+b2=c2这就是我们所熟悉的勾股定理。它揭示了直角三角形三边之间的数量关系.灵活应用它,不仅可以解决与直角三角形有关的计算问题,一些与斜三角形有关的计算问题也可通过添作垂线后获得解决.现以近年来的中考题为例介绍勾股定理在几何计算中的应用.例1如图1,Rt△ABC中,CD是斜边AB上的高,已知AD=4,BD=16,则CD=(1995年甘肃省中考题)解在Rt△ABC中,AB=AD+BD=20,ACZ+BCZ一ABZ一400.在Rt凸ACD和…  相似文献   

5.
构造如图所示的几何图形,设⊙O为单位圆,直角△ABC的边AC、BC切⊙O于M、N,PE⊥OM,∠AOM=∠α,易知sinα=PE,cosα=OE,tgα=AM,ctgα=BN,secα=OA,cscα=OB.1 证明同角三角函数的基本关系式平方关系 在Rt△OEP、Rt△OMA、Rt△BNO中,应用勾股定理可得sin2α+cos2α=1,1+tg2α=sec2α,1+ctg2α=csc2α.例数关系 利用Rt△OEP∽Rt△OMA,Rt△OEP∽Rt△BNO,Rt△OMA∽Rt△BNO,分别得1…  相似文献   

6.
勾股定理及其逆定理是平面几何中两个非常重要的定理,不少几何问题需要综合应用这两个定理才能得到解决.现举例说明,供参考.例1如图1,在△ABC中,D是BC上一点,AB=13,AD=12,BD=5,AC=15,求DC的长.分析在△ADC中,已知两边的长,要求第三边的长.若△ADC不是特殊三角形,则无法求解.因此我们可以判断△ADC是否是特殊三角形,然后利用已知条件证明上述判断.在△ABD中,BD2+AD2=52+122=132=AB2,由勾股定理的逆定理可知,△ABD为直角三角形,ADB=90°.所…  相似文献   

7.
三角形三边关系定理及其推论有多方面的应用,现举例分述如下:一、证明线段间的不等关系.常用于证明两线段的和(差)大于(小于)第三线段.一般是选择或构造三角形,使这个三角形以相关线段为边,然后用定理或推论证明.例1如图,已知D、E是△ABC内的两点.求证:AB+AC>BD+DE+EC.证明延长DE交AC于点G,延长ED交AB于点F.在△AFG中,AF+AG>FG.(1)在△FBD中,FB+FD>BD.(2)在△GCE中,GC十EG>EC.(3)将(1)、(2)、(3)式相加,得AF+AG+FB+FD…  相似文献   

8.
勾股定理是几何中一个极为重要的定理 ,它揭示了直角三角形三边之间的数量关系 .灵活应用它 ,不仅可以证明一些与线段平方有关的等量问题 ,而且可以证明一些与线段和差有关的不等问题 .例 1 如图 1 ,在△ABC中 ,∠C =90°,D是AC边的中点 .求证 :AB2 +3BC2 =4BD2 .证明 在Rt△ABC中 ,∵ AB2 =AC2 +BC2 ,  AC =2CD ,∴ AB2 =4CD2 +BC2 .在Rt△BCD中 ,∵ CD2 =BD2 -BC2 ,∴ AB2 =4(BD2 -BC2 ) +BC2 .∴ AB2 +3BC2 =4BD2 .图 1图 2  例 2 如图 2 ,在△ABC中 ,∠AC…  相似文献   

9.
分析这道题的常规解法是通过相似三角形对应边成比例,求出AD的长,再用勾股定理计算出CD来.倘若利用三角形面积公式解这道题,既简捷又明快.解在Rt△ABC中,由勾股定理得例2如图2,已知ABC中,AB=AC=10,BC=16,P为BC上任一点,PDAB,PEAC,垂足分别为D、E.试求PD+PE的值.解过A作AMBC,垂足为M,连结AP.由评析通过这道题的解,我们发现利用面积解题,确实给人以耳目一新之感.例3如图3,已知BD、CE是否ABC的两条高.求证:AB·CE=AC·BD.分析这道题的常规解…  相似文献   

10.
一个被遗漏的解静宁县石咀初中方水田初中几何二册复习参考题六第2题为:已知:△ABC中,AB=15,AC=20,高AD=12,求角平分线AE的长。绝大多数学牛的解法是,如图(1),在Rt△ABD和Rt△ADC中,利用勾股定理求得BD=9,DC=16。在...  相似文献   

11.
勾股定理揭示了直角三角形三边之间的数量关系,它在解有关直角三角形的问题中有广泛的应用.现举例说明它在几何计算中的应用,供同学们参考.例1如图1,凸四边形ABCD中,四边AB、BC、CD和DA的长分别是3、4、12和13,∠ABC=90°,则四边形ABCD的面积是多少?(第七届“希望杯”竞赛试题)分析由题设AB=3,BC=4且∠ABC=90°,连结AC得Rt△ABC,根据勾股定理易求AC=5.在△ACD中根据勾股定理的逆定理可以判定△ACD为直角三角形.计算两直角三角形面积之和即为四边形ABCD的…  相似文献   

12.
初中平面几何中关于证明线段等积式的问题 ,是常见的一种题型 ,它是教学的一个重点.现举例介绍八种常用方法.一、利用平行线分线段成比例定理例1 如图(1) ,AD是△ABC的∠A的平分线 ,交BC于D点 ,求证AB·DC=BD·AC.AB2∶AC2=PB∶PC.四、利用射影定理例4 如图(4) ,△ABC中 ,AB=AC ,以AB为直径作圆交BC于D ,O是圆心 ,DM是⊙O的切线交AC于M ,求证DC2 =AC·CM.思路分析 :证明△ADC是Rt△ ,并且DM⊥AC ,就可利用射影定理证得结论.五、利用圆幂定理例5 如图(5…  相似文献   

13.
垂径定理的基本功能是证明两条线段相等和两段弧相等. 例1 如图1,已知AB为的直径,且AB⊥CD,垂足为M,CD=8,AM=2,则OM=(2000年江苏省南京市中考题) 分析… AB⊥CD,CD=8, ∴由垂径定理可知 CM=MD=4AM=2,… 欲求OM,只需求出半径OA的长即可.为构成直角三角形,应连结 OC.设 OA的长为x,则 OM=X-2.于是,在RtOMC中,根据勾股定理列出关于x的方程,得x2=(x-2)2+42.解此方程,得x=5.从而可求得OM=3.解略. 若已知图形中没有垂径定理的基本…  相似文献   

14.
勾股定理是几何中一个极为重要的定理,它揭示了直角三角形三边之间的数量关系.应用它,不仅可以解竞赛计算题,而且可以解竞赛证明题.例1若直角三角形的两直角边的长分别为1和2,则斜边上的高为()(A);(B)(C);(D).(1995年昆明市初中数学竞赛试题)解如图1,在Rt△ABC中,∠ACB=90°,AC=1,BC=2,例2在△ABC中,∠C=90°,∠A=15°,AB=10,则△ABC的面积为()(A)10;(B)10;(C)12.5;(D)15.(1993年吉林省初中数学竞赛试题)解如图2,作…  相似文献   

15.
垂直且平分一条线段的直线是这条线段的垂直平分线,它具有如下重要性质:线段垂直平分线上的点与这条线段的两个端点的距离相等.求解某些几何证明问题,从构造线段垂直平分线人手,然后利用其性质,可简化思维过程,收到事半功倍的效果.例1如图1,D、E是△ABC的边BC上两点,AB=AC,BD=CE.求证:AD=AE.证明过A作AF⊥BC于F.∵AB=AC,∴BF=CF.∵BD=CE,∴DF=EF.∴AF是DE的垂直平分线.∴AD=AE.例2如图2,E为△ABC的∠A的平分线AD上一点,AB>AC.求证:AB…  相似文献   

16.
几何题中有不少问题的证明都是通过全等三角形来实现的.这里,如何构造全等三角形自然成为解决问题的关键.本文就角平分线条件构建全等三角形谈些思路.思路I过已知边上一点作角平分线的垂线,延长此垂线段与另一边相交得全等三角形,例1如图1,在西△ABC中,∠ABC=3∠C,∠A的平分线为AD,BP⊥AD,P是垂足.求证:BP=1/2(AC-AB).证明延长BP交AC于Q.∵AP平分∠BAC,且AP⊥BQ,∴Rt△APB≌Rt△APQ.∵∠1=∠2,∴∠ABC=∠1+∠3=∠2+∠3=(∠3+∠C)+∠3=…  相似文献   

17.
所谓面积法就是利用几何图形中的边、角与面积之间的关系,运用代数手段来完成几何中的推理过程.用面积法一般可不添或少添辅助线,证法简洁,易于被学生接受和掌握.图11 证明线段相等例1 (1978年高考题)AB是圆的直径,C是半圆上一点,直线MN切半圆于C点,AM⊥MN于M,BN⊥MN于N,CD⊥AB于D.求证:(i)CD=CM=CN;(ii)CD2=AM·BN.证明 连结AC、BC,如图1,由∠MCA=∠ABC知 ∠MAC=∠CAD.在Rt△ADC与Rt△ACM中,有AD·CDAM·CM=AC·AD…  相似文献   

18.
在解答某些数学问题的过程中,常常可以根据题目特征,联想有关定理或命题,适当地构造几何图形,巧妙地运用几何知识和方法,化抽象为形象,借助直观启发思维,达到另辟蹊径,巧解难题的目的。通常将这种方法称为“构造图形法”。一、利用勾股定理构造图形例:已知z、y、z、r均为正数,且x2+y2=z2,z=x2求证:xy=rz证:考虑题设特点,构造Rt△ABC(如图1),使BC=x,AC=y,则AB=z;又作CDAB于D,由射影定理x2=BC2=AB·BD=z,又由题设x2=z,故CD=r,从而S△ABC=xy…  相似文献   

19.
证明三角形全等一般有下面三种思路.一、两个三角形中,已知两边对应相等,需证出它们的夹角对应相等,或者第三边对应相等.例1已知:如图1,B为AC的中点,BE=BD,∠1=∠2.求证;∠A=∠C.分析显然需证△ABE≌△CBD,已有AB=BC,BE=BD,还需要证明它们的夹角∠ABE=∠CBD,而∠1=∠2,它们的夹角相等是显然的.证明∠1=∠2(已知),∠1+∠3=∠2+∠3(等式性质),即∠ABE=∠CBD.在△ABE和△CBD中,AB=BC,BE=BD,∠ABE=∠CBD,△ABE≌△CBD(SAS…  相似文献   

20.
等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合.这就是等腰三角形的“三线合一”定理.这个定理可分解为下面三个定理:(1)在△ABC中,若AB=AC,AD是顶角平分线,则ADBC,BD=DC.(2)在△ABC中,若AB=AC,AD是底边上的高,则BD=DC,∠DAB=∠DAC.(3)在△ABC中,若AB=AC,AD是底边上的中线,则AD上BC,∠DAB=∠DAC.由此可知,等腰三角形“三线合一”定理有三个基本功能:(1)利用“三线合一”定理可以证明两条线段相等.(2)利用“三线合一”定理…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号