首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
1 赛题与"源" 赛题 (2005年全国高中数学联赛加试题第二题)设正数a,b,c,x,y,z满足cy+bz=a,az+cx=b,bx+ay=c,求函数f(x,y,z)=x2/(1+x)+y2/(1+y)+z2/(1+z)的最小值.  相似文献   

2.
题1(《数学通报》2007年1月1651号问题)已知x、y、z∈R+,n∈N,求证:x/nx+y+z+y/x+ny+z+z/x+y+nz≤3/n+2(1).  相似文献   

3.
有如下两个数学问题: 题1已知x、y、z∈R+且x+y+z=1,求证:  相似文献   

4.
定理:如果x,y,z∈R+,那么x3+y3+z3+3xyz≥x2y+x2z+y2x+y2z+z2x+z2y(当且仅当x=y=z时取"="号)  相似文献   

5.
上海市1985年初中数学竞赛出了一道这样的题:x~2y—y~2z+z~2x—x~2z+ y~2z+z~2y—2xyz因式分解后的结果是( ) (A)(y—z)(x+y)(x—z), (B)(y—z)(x—y)(x+z), (C)(y+z)(x—y)(x+z), (D)(y+z)(x+y)(x—z). 现在收到两位作者的来稿,用不同的方法解了这道题,现逐一介绍如下.  相似文献   

6.
一、赛题与"源" 赛题:设正数α,b,c,x,y,z满足cy+bz=α,αz+cx=b,bx+ay=c,求函数f(x,y,z)=x2/1+x+y2/1+y+z2/1+z的最小值.  相似文献   

7.
孙毅 《中等数学》2003,(5):19-19
题目 已知x≥y≥z>0 .求证 :x2 yz +y2 zx +z2 xy ≥x2 +y2 +z2 .这是第 3 1届IMO的一道预选题 ,原解答较繁 ,且技巧性强 ,这里给出一个相对简洁的证法 .证明 :由Cauchy不等式 ,有x2 yz +y2 zx +z2 xyx2 zy +y2 xz +z2 yx≥(x2 +y2 +z2 ) 2 .观察上式知 ,如有x2 yz +y2 zx +z2 xy ≥x2 zy +y2 xz +z2 yx ,则问题得证 .通分移项 ,有x3 y2 -x2 y3 +y3 z2 -y2 z3 +x2 z3 -x3 z2 ≥0 .①故只须证式①成立 .x3 y2 -x2 y3 +y3 z2 -y2 z3 +x2 z3 -x3 z2=x2 y2 (x-y) +y2 z2 (y-z) +x2 z2 (z-x)=x2 y2 (x -y) +y2 z2 (y -z) +x2 z2 ·(z-y +y -x)…  相似文献   

8.
今天看到读初二的小侄女做这样一道题:(x+y+z)2=___。她几乎不假思考就写出了以下解答:(x+y+z)2=((x+y)+z)2=(x+y)2+2(x+y)z+z2=x2+y2+z2+2xy+2yz+2zx看到这个解答我心里很高兴,但身为数学老师的我忽然意识到有什么地方不太对劲:为什么这么快?于是,我将这道题稍加变化,给小侄女出了另一道题:(x+y-z)2=___。  相似文献   

9.
题 已知a、b、c ,x、y、z是实数 ,a2 +b2 +c2 =1 ,x2 +y2 +z2 =9,求 ax +by +cz的最大值。1 错解解 由均值不等式可得ax≤ a2 +x22 ,by≤ b2 +y22 ,cz≤c2 +z22 ,各式相加得 :ax +by +cz≤ a2 +x2 +b2 +y2 +c2 +z22=a2 +b2 +c2 +x2 +y2 +z22=1 +92=5 ,即 ax +by +cz≤ 5 ( )故 ax +by +cz的最大值为 5。错因 在用均值不等式求最值时忽略了等号成立的条件 ,因为要使 ( )等号成立 ,当且仅当a =x ,b =y ,c=z ,这与已知条件矛盾。所以ax +by +cz <5 ,即ax +by +cz的最大值不可能为 5。2 通解分析 该题的问题是由于a2 +b2 +c2 ≠x2 +y…  相似文献   

10.
题已知x、y、z均为正实数,求证:x/2x+y+z+y/x+2y+z+z/x+y+2z≤3/4(1996年《中等数学》第2期数学奥林匹克问题初40题)文[1]、[2]分别给出了上述不等式的一种证法.本文再给出几种新证法.  相似文献   

11.
面对含二元、三元 ,甚至多于三元未知问题时往往会令我们束手无策 ,但方程思想为我们指明了一条光明大道 .【例 1】 已知x ,y ,z∈R ,x+y +z=π ,x2 +y2 +z2 =π22 ,求证0 ≤x≤2π3 ,0 ≤y≤ 23 π ,0 ≤z≤ 23 π分析 :x ,y ,z为三元尽管具有对称性但让我们无从下手 .怎样才能减少变元从而化归为我们所熟悉的问题呢 ?且看方程解 :由题知 y+z =π-x ①y2 +z2 =π22 -x2 ②①2 -② y·z =x2 -πx+ π24= (x -π2 ) 2 ③由①③可得y·z是方程t2 -(π-x)t + (x-π2 ) 2 =0的两实数根 .∴Δ =(π -x) 2 -4 (x -π2 ) 2 ≥ 0 x· ( 3x-2π)…  相似文献   

12.
正第49届国际数学奥林匹克数学竞赛第2题是:设实数x,y,z都不等于1,满足xyz=1,则x~2/(1-x)~2+y~2/(1-y)~2+z~2/(1-z)~2≥1.本文给出上述不等式的一个类比:命题1设实数x,y,z都不等于-1,且xyz=1,则x~2/(1+x)~2+y~2/(1+y)~2+z~2/(1+z)~2≥3/4.  相似文献   

13.
一个不等式的新证   总被引:1,自引:1,他引:1  
1996年<中等数学>第2期数学奥林匹克题初40题为:已知x,y,z为正实数,求证:(x)/(2x y z) (y)/(x 2y z) (z)/(x y 2z)≤(3)/(4).  相似文献   

14.
在刚刚结束的2013年高考数学湖北理科卷中,有这样一道填空题:设x,y,z∈R,且满足x2+y2+z2=1,x+2y+3z=141,则x+y+z=.本题是一道多元变量的数值求解问题,它主要考查了柯西不等式及等号成立的条件.作为填空题,它要求学生具有较好的数学素养,具有一定的分析解决问题的能力,属于中档题,但从我校学生考试的整体情况来看,很不理想,许多同学对该题不知从何下笔.下面笔者从不等式、向量、方程、几何这四个不同角度分别来进行分析求解,得到如下几种不同解法,以飨  相似文献   

15.
在一些资料中常见到如下一类习题,现例举一个题及解法于后。题目:已知x+y/z=y+z/x=z+x/y=k (1) 求k之值 (解1) 由(1)可得(2)+(3)+(4)得2(x+y+z)=k(x+y+z) 两边同除以(x+y+z)可得k=2. 另一种解法是:上法中(2)—(3)得y—x=k(x—y) ∴ k=—1 以上两种解法的解,确系原题的解。显然各种解又是不完善的,解法也是不妥当的。这样的错误  相似文献   

16.
问题若实数x,y,z满足x+y+z=12,x 2+y 2+z 2=54,试求xy的最大值和最小值.[JP3]解法1:由x 2+y 2=54-z 2,可设x=54-z 2 cosθ,y=54-z 2 sinθ.[JP]则x+y+z=12,即12-z=54-z 2(sinθ+cosθ)=108-2z 2 sin(θ+π4),从而|12-z|≤108-2z 2,解得z∈[2,6].所以xy=12[(x+y)2-(x 2+y 2)]=12[(12-z)2-(54-z 2)]=z 2-12z+45.由2≤z≤6,得9≤z 2-12z+45≤25,即xy的最大值为25,最小值为9.  相似文献   

17.
题目设x,y,z∈(0,+∞)且2 2 2x+y+z=1,求函数f=x+y+z xyz的值域.这是一道《美国数学月刊》征解题,文[1]运用三角代换及导数给出了此题的一个解法,文[2]给出求f上界的抽屉原则的解法,文[3]给出了幂平均不等式的解法.此题运用初等数学的知识来解难度都比较大,下面以高等数学中的拉格朗日乘数法为突破口,给出此题的一个简单解法.解设拉格朗日函数为L(x,y,z,λ)=x+y+z2 2 2xyzλ(x+y+z 1),对L求偏导数,并令它们都等于0,则有1 2 01 2 0L yz x x L xz yλλ====,,2 1(1)yz xλ+=,,  相似文献   

18.
1 选择题( 1)设z =2xy3 ,则2y=(  )。 A 2 z y2        B 2 z x2 C 2 z x y  D 2 z y x( 2 )设z =2xy3 ,则z y x =2y =2 =(  )。 A 8 B 32 C 2 4 D 4 8( 3)函数z=ln( 4 -x2 - y2 )x2 +y2 - 1的定义域为(  )。 A x2 +y2 <4 B x2 +y2 >1 C 1相似文献   

19.
2019年高考全国卷Ⅲ第23题(1):设x,y,z∈R,且x+y+z=1,求(x-1)^2+(y+1)^2+(z+1)^2的最小值.若以不等式方式呈现就是:设x,y,z∈R,且x+y+z=1,求证:(x-1)^2+(y+1)^2+(z+1)^2≥4/3.  相似文献   

20.
题目 设x,y,z∈R,且满足x2+y2+z2=1,x+2y+3z=√14,则x+y+z=____. 本题言简意赅,内涵朴实、解法多样,思想鲜活,是一道难得一见的好题,下面提供6种解法,供同行参考. 解法1 (柯西不等式法)由柯西不等式得:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号