首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
给定椭圆c:(x~2/a~2) (y~2 b~2)=1,作线性变换:x′=x/a,y′=y/b,(*)则椭圆C变为单位圆C′:x′~2 y′~2=1.我们把变换(*)称为均匀伸缩变换,通过均匀伸缩变换可以把任意形状的椭圆变为单位圆,从而可利用单位圆的性质来解决椭圆的有关问题,为此,我们首先介绍均匀伸缩变换下的不变性,这些性质的证明可参看高等几何方面的书籍,也可利用解析几何知识给出初等证明,此处略去,有兴趣的读者不妨一试。  相似文献   

2.
<正> 在函数图象变换中,有一种变换叫做伸缩变换.伸缩变换在解析几何中也有广泛应用.本文举例说明伸缩变换在椭圆中的应用.椭圆C:(x2)+(y2)/(b2)=0(a>b>0),作变换f:(x/a,y/b)→(u,v),则C变换为uOv平面内的圆C’:u2+v2=1.由此可得下面几个重要结论:  相似文献   

3.
有关圆锥曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的弦的中点问题,大体可分为两类:一是已知斜率为k的一组平行弦中点的轨迹(也就是直径)的方程;一是以定点(x_0,y_0)为中点的弦所在直线的方程(中点弦的方程)。下面分别作论述。一、斜率为k的一组平行弦中点的轨迹(直径)方程定理1.二次曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的斜率为k的一组平行弦中点的轨迹(即直径)方程是(2A+Bk)x+(B+2Ck)y+(D+Ek)=0①推论二次曲线的直径是一条过斜率为  相似文献   

4.
近期,《数学通报》问题解答栏目刊登了两道涉及椭圆点共线问题,给出的答案均比较烦琐,本文将用伸缩变换的方法给出比较简单的证明.首先介绍一下伸缩变换的有关内容. 在平面直角坐标系下,作如下伸缩变换变换:﹛x' =x y'=a/by,则椭圆b2x2 +a2y2=a2b2(a>b>0)变为圆:x2+ y2=a2.  相似文献   

5.
定义:连结椭圆上任意两点的线段叫弦.过椭圆中心的弦叫直径.类似地可定义双曲线的直径.如图1,平行于直径CD的弦的中点的轨迹AB和直径CD叫互为共轭直径.类似地可定义双曲线的共轭直径. 定理1 已知AB、CD为椭圆x~2/a~2 y~2/b~2=1的一对共轭直径,其斜率分别为k_(AB)、K_(CD),那么K_(AB)·K_(CD)=-b~2/a~2. 略证:如图1,设平行弦EF簇的斜率为k(即K_(CD)),则平行弦EF簇的方程为 y=kx t(t为参数).① 又椭圆方程为 x~2/a~2 y~2/b~2=1. ② ①代入②整理得 (a~2k~2 b~2)x~2 2a~2tkx a~2(t~2-b~2)=0. ③ 由韦达定理,得x_1 x_2=-(2a~2tk/a~2k~2 b~2). 设M(x′,y′)是EF的中点,则 x′=1/2(x_1 x_2)=-(a~2tk/a~2k~2 b~2) ④ 点M在EF上,则y′=kx′ t. ⑤ 由④、⑤消去参数t得 y′=-b~2/a~2k x′. ∵k_(AB)=k_(OM)=-(b~2/a~2k). ∴k_(AB)·k_(CD)=-(b~2/a~2k)·k=-(b~2/a~2). 推论1 AB是椭圆x~2/a~2 y~2/b~2=1的任意一条弦,P为AB的中点,O为椭圆的中心,则 K_(AB)·K_(OP)=-(b~2/a~2).  相似文献   

6.
对于椭圆x2/a2+y2/b2=1,令x’=x/a,y’=y/b,则椭圆方程变为:x’2+y’2=. 1,此为单位圆方程.这样,椭圆问题就可充分利用圆的性质来解决了.举例说明. 例1若直线l:x+2y+t=0与椭圆C:x2/9+y2/4=1相交于两点,求t 的取值范围. 解:令x=3x’,y=2y’,则椭圆C和直线l分别变成圆C’:x'2+y'2= 1和直线l':3x’+4y’+t=0.  相似文献   

7.
性质椭圆x2a2+y2b2=1(a>b>0)上任意一点P与过中心的弦AB的两端点A、B的连线PA、PB与对称轴不平行,则直线PA、PB的斜率之积为定值.证明如图1所示,设P(x,y),A(x1,y1),则B(-x1,-y1).∴x2a2+y2b2=1,①∴x21a2+y21b2=1,②由①-②得x2-x21a2=-y2-y21b2,∴y2-y21x2-x21=-b2a2,∴KPA·KPB=y-y1x-x1·y+y1x+x1=y2-y21x2-x21=-b2a2为定值.这条性质是圆的性质“圆上一点对直径所张成的角为直角”在椭圆中的推广,它充分揭示了椭圆的本质属性,因而能简洁地解决问题.推论若M是椭圆的弦AB之中点,则直线OM与直线AB的斜率之积为定值.证明如图2所…  相似文献   

8.
解析几何中的轨迹问题是高中数学的难点之一,高三复习时我们应该通过变换对这类问题进行比较、归纳,提高复习效率.下面是对弦中点轨迹问题的探讨. 例已知圆C:x2+y2=16, 直线l经过点A(1,2)并与圆C交于M、N两点,当l的倾斜角变化时,求弦MN的中点轨迹方程. 解:设弦中点为P(x,y).则CP·AP=0.  相似文献   

9.
一阶导数与二次曲线弦中点间存在着一种内在联系,这种联系为解决二次曲线中点弦一类问题开辟了一条较为简捷的路径.本文就以定理形式揭示这种联系并列举应用. 定理:椭圆x~2/a~2 y~2/b~2=1的以斜率为k的一组平行弦中点轨迹方程是x~2/a~2 yy_x~'/b~2=0(※)(|x|≤a,|y|≤b)其中y_x~'就是平行弦的斜率k,它等于直线(※)与椭圆交点处切线的斜率. 证明:设点P(x_0,y_0)是以k为斜率的弦P_1P_2的中点,点P_1(x_1,y_1),P_2(x_2,y_2)  相似文献   

10.
这类问题已有一般解法,本文拟分三种情况讨论。一、求平行弦的中点轨迹例1.已知椭圆x~2/a~2+y~2/b~2=1(a>b>0),求斜率是k的平行弦的中点轨迹。解设弦的两端点为P_j(x_j,y_j)(j=1,2),中点为P(x,y)。则有  相似文献   

11.
一般来说,函数图象的变换包括平移、翻折、伸缩变换与对称变换。平移就是把y=f(x)的图象径过上、下、左、右的平行移动后,得到函数y=f(x+b)+a的图象;翻折是把y=f(x)的图象沿着直线y=a为折痕,使图象翻折到直线的同一侧去,得到函数y=±|f(x)|+2a的图象;伸缩变换是通过把y=f(x)的图象伸或缩,  相似文献   

12.
运用伸缩变换,可以将椭圆问题转化为圆问题. 例如图1,椭圆方程为x2/16 y2/25=1,点P坐标(0,3),过点P作直线AB、CD,分别交椭圆于A、B、C、D,AD中点为M,已知kAB·kCD=-25/16,求M点的轨迹方程. 你可以用常规解法试一下,会发现解题过程很烦琐.这里我给你介绍一个小技巧,对题中椭圆进行伸缩变换,把椭圆转换成圆,解法就变简单多了.具体解法如下: 令x=4/(?)x0,y=y0,  相似文献   

13.
求曲线的轨迹方程,是解析几何中的两大基本问题之一,其方法的运用,不仅能深化曲线方程的概念,形成处理解析几何问题的基本思想,还常常联系着一些重要的解题方法和技巧.因此,学生应注意探讨并掌握以下几种求轨迹方程的常用方法.■一、待定系数法已知所要求的曲线是所学过的曲线类型,可先根据题意设出其方程,再由条件确定其待定系数,代回所设方程即可.例1中心在原点,一个焦点为F10,50√的椭圆截直线y=3x-2所得弦的中点横坐标为12,求椭圆的方程.解:据题意,设椭圆的方程为y2a2+x2b2=1a>b>0.由焦点F10,50√知a2-b2=50.由y2a2+x2b2=1,y=3x-2 …  相似文献   

14.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

15.
1命题命题1若A B是椭圆22C1:ax2+by2=1的一条弦,且弦AB的中点为M(xM,y M),则椭圆22222C:(2x M x)(2y My)a b?+?=1经过A、B两点.证明设点A(x A,y A)、B(x B,y B),则由M是弦AB的中点,可知,x B=2x M?xA,y B=2y M?yA,由点B在椭圆C1上,知(2x M?x A)2/a2+(2y M?y A)2/b2=1,所以点A在椭圆C2上.同理可知点B也在椭圆C2上,故椭圆C2经过A,B两点.类似地有:命题2若AB是双曲线22C1:ax2?by2=1的一条弦,且弦AB的中点为M(xM,y M),则双曲线22222C:(2x M x)(2y My)1a b???=经过A,B两点.命题3若AB是抛物线y2=2px的一条弦,且弦AB的中点为…  相似文献   

16.
结论1:在椭圆x2/a2 y2/b2=1(a>b>0)上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为定值-b2/a2(注:若椭圆焦点在y轴上时,即b>a>0,则定值为-a2/b2).证明:设原点为O,A(x1,y1),B(x2,y2)是椭圆上的任意不同的两点,  相似文献   

17.
圆锥曲线是解析几何中的重要内容,与圆锥曲线有关的轨迹问题也是教学的一个难点.本文给出圆锥曲线弦的定比分点的轨迹方程的几个通式,并说明它的应用.命题1设斜率为k的直线与椭圆b2x2+a2y2=a2b2(a>0,b>0)相交于A、B两点,动点M满足AM=λMB(λ为常数),则点M的轨迹方程是2(22)2(1)(2222b x+a ky+λ4?λb x+a y?a2b2)(b2+a2k2)=0.证明设点M(x,y),直线AB的参数方程为x0=x+t,y0=y+kt(t为参数),代入椭圆方程并整理得:(b2+a2k2)t2+2(b2x+a2ky)t+b2x2+a2y2?a2b2=0.设点A(x1,y1),B(x2,y2)对应的参数分别为t1,t2,则:22222t1+t2=?2(b x+a ky)/(b+a…  相似文献   

18.
我们把椭圆x2/a2+y2/b2=1的参数方程{x=acosθ y=bsinθ意一点P(acosθ,bsinθ)的离心角.本文介绍与椭圆的离心角相关的两个有趣性质供读者参考. 性质1 椭圆(或圆)x2/a2+y2/b2=1(a>0,b>0)的两条相交弦AB,CD的四个端点共圆的充要条件是这四个端点的离心角之和为周角的整数倍.  相似文献   

19.
一、有关圆锥曲线中点弦的斜率问题此类问题常设弦的两端点坐标为(x1,y1)、(x2,y2),分别代入圆锥曲线方程后,设法变换出表示弦的斜率的式子,从而使问题获解。例:已知直线L交椭圆于M、N两点,B(0,4)为椭圆与y轴正方向的交点。若△BNM的重心恰重合于椭圆的右焦点.试求L的方程如(图1)分析:解答本题的关键是求点P的坐标和前线L的斜率。注意到P是MN的中点,因此这是一个与中点弦斜率有关的问题。P(3,-2),设M(x1,y1),N(x2,y2)代入椭圆方程后相减:4(x1+x2)(x1-x2)+5(y1+y2)(y1-y2)=0L的方程为…  相似文献   

20.
曲线C在点P(x0,y0)曲率圆是与该曲线C相切于点P(x0,y0)(凹侧)的最大圆,曲率圆的圆心D的轨迹曲线G称为曲线G的渐屈线.抛物线y2=2px(p>0)、椭圆x2/a2+y2/b2=1和双曲线x2/a2-y2/b2=1的渐屈线方程分别为y2=8/27P(x-p)3、x3/(c2/a2/3=1和x3/(c2/a2/3-y3/(c2/b)2/3=1.抛物线、椭圆和双曲线的最小曲率圆都是它们的内切圆,其方程分别为(x-P)2+y2=p2、(x±c2/a)2+y2=b4、(x±c2/a)2+y2=b4/a2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号