首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
在高三数学复习教学中,遇到如下的一个问题:如图1,已知抛物线C:y=x2,过点P(0,2)的直线交抛物线于M、N两点,曲线C在点M、N处的切线交点为Q,求证:点Q必在同一条直线上.证明:设M(x1,y1),N(x2,y2),则y1=x21,y2=x22,过点M,N的切线方程为联立得y-x21=2x1(x-x1)y-x22=2x2(x-x2),解得x=  相似文献   

2.
错在哪里     
数学抛物线的顶点在原点,对称轴为y轴,它与圆x2 y2=9相交,公共弦MN的长为2(5~(1/2)),求该抛物线的方程.错解:设抛物线的方程为x2=2py(P∈R),M(x1,y1),N(x2,y2).  相似文献   

3.
三、圆锥曲线的焦点弦问题过焦点的直线与圆锥曲线相交,两个交点的线段叫焦点弦,与焦点弦有关的圆锥曲线问题常用定义(特别是第二定义中的焦半径公式)把问题转化.1.如果弦MN过椭圆的焦点F1,设M(x1,y1),N(x2,y2),则|MN|=a ex1 a ex2=2a e(x1 x2).【例6】设椭圆方程为ax22 by22=1  相似文献   

4.
<正>在平面几何中,我们有著名的蝴蝶定理(Butterfly theorem):设F是圆内弦PQ的中点,过点F作弦AB和CD,设AD和BC各相交PQ于点M,N,则F是MN的中点.笔者通过对蝴蝶定理的解读,尝试将其在抛物线中类比探索研究,得到:结论如图1,过抛物线x2=4my(m>0)的焦点F任意作两条弦分别与抛物线交于点A,B,C,D,连结AC,BD交直线y=m于M,N两点,则M,N关于点F对称.  相似文献   

5.
<正>试题已知抛物线C:x2=-2py经过点(2,-1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M、N,直线y=-1分别交直线OM、ON于点A、B,求证:以AB为直径的圆经过y轴上的两个定点.这是2019年北京卷理科第18题,我们首先给出试题的一种新解法.解答 (Ⅰ) 由抛物线C:x2=-2py经过点(2,-1),则4=2p,所以抛物线C的方程为x2=-4y  相似文献   

6.
题目如图1,抛物线y=x2+bx+c经过点(1,-5)和(-2,4).(1)求这条抛物线的解析式.(2)设此抛物线与直线y=x相交于点A和点B(点B在点A的右侧),平行于y轴的直线x=m(0相似文献   

7.
习题经过抛物线y2=2px(p>0)的焦点F作一直线与抛物线相交于P1、Q1两点,求证:以线段P1Q1为直径的圆与抛物线的准线相切.证明设P1Q1的中点为M,点P1、Q1、M在抛物线准线上的射影分别为点P2、Q2、N,则P1P2=P1F,Q1Q2=Q1F.因为MN是直角梯形P1Q1Q2P2的中位线,所以MN=1/2(P1P2 Q1Q2)=12(P1F Q1F)=1/2P1Q1,圆心M到准线的距离等于圆的半径,所以此圆与准线相切.结论以抛物线的焦点弦为直径的圆与其准线相切.反思1若以圆锥曲线的焦点弦为直径的圆与相应的准线相切,那么此圆锥曲线是否是抛物线?判断设圆锥曲线的焦点F,过焦点的弦为PQ,…  相似文献   

8.
设直线l经过抛物线C:y2=2px(p>0)的焦点F,且与抛物线C交于A、B两点(直线AB的倾斜角为α),设A (x1,y1),B(x2,y2),O为坐标原点,准线方程为:x=-p/2,则关于抛物线C的焦点弦有以下九条常用的性质:(1)2x1x2=p/4;(2)y1y2=-p2.  相似文献   

9.
关于圆锥曲线弦的求法,笔者得到一条结论,现提供于下。 定理:设圆锥曲线C的方程为F(x,y)=0,M、N为C上不同两点,若线段MN的中点为P(a,b),则直线MN的方程为 F(x,y)-F(2a-x,2b-y)=0。 (*) 证明:设M点的坐标为(x_1,y_1),M在圆锥曲线C上,F(x_1,y_1)=0。又因为线段MN的中点P的坐标为(a,b),N的坐标为(2a-x_1,2b-y_1)。又N在圆锥曲线C上,  相似文献   

10.
<正>题目(2013年绍兴市)如图1,抛物线y=(x-3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.(1)求点B及点D的坐标;(2)连结BD,CD,抛物线的对称轴与x轴交于点E.①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标;②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.  相似文献   

11.
题目:抛物线y=x2+bx+c经过点(1,-5)和(-2,4).(1)求这条抛物线的解析式;(2)设此抛物线与直线y=x相交于点A、B(点B在点A的右侧),平行于y轴的直线x=m(01/2+1)与抛物线交于点M,与直线y=x交于点N,交x轴于点P,求线段MN的长(用含m的代数式表示).(3)如图1,在条件(2)的情况下,连接OM、BM,是否存在m的值,使ΔBOM的面积S最大?若存在,请求出m的值;若不存在,请说明理由.  相似文献   

12.
(2006年全国卷Ⅱ,理21)已知抛物线x2=4y的焦点为F,A、B是抛物线上的两点,且AF=λFB.过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明:FM·AB为定值;(Ⅱ)设△ABC的面积为S,写出S=f(λ)的表达式,并求S的最小值.解(Ⅰ)由题意知直线AB的斜率一定存在,设AB的斜率为k,A(x1,y1),B(x2,y2),又F(0,1),则直线AB方程为y=kx 1,代入x2=4y,得x2-4kx-4=0,由根与系数的关系,得x1 x2=4k,x1x2=-4.对y=41x2求导,得y=21x.所以过抛物线上两点A、B的切线方程分别是y=21x1(x-x1) y1,y=21x2(x-x2) y2,即y=21x1x-41x12,y=12x2x-14x22,解出两条切线交…  相似文献   

13.
抛物线是圆锥曲线的一种,其离心率e=1,具有很多特有的性质.引例:已知抛物线y2=2px(p>0),过抛物线焦点的一条直线与抛物线相交于A(x1,y1),B(x2,y2)两点,o为坐标原点.在这个共同的条件下,有许多定值问题.下面一一介绍.定值1x1x2=p2/4;y1y2=?p2.证明当直线斜率存在,设直线方程()(0  相似文献   

14.
题目:定长为3的线段AB的端点A、B在抛物线y=x2上移动,求AB的中点M到x轴距离的最小值.某同学对此题有以下两种解法.解法1:设A(x1,y1)、B(x2,y2)、M(x0,y0),x1≠x2,则由中点公式得,y0=y12 y2=x212 x22≥-x1x2.当且仅当x1=-x2(不妨设x1>0,x2<0),即A、B为抛物线上关于y轴对称的两点  相似文献   

15.
抛物线的焦点弦有着很多值得思考的性质,这里略举一二.图1(一)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则弦长|AB|=x1 x2 p.这由抛物线的定义很容易得到.(二)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则y1·y2=-p2.证明:抛物线y2=2px与直线AB:x=ky 2p,联立得y2-2kpy-p2=0,所以由韦达定理得y1·y2=-p2.(三)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,令|AF|=r1,|BF|=r2,则r11 r12=2p.设抛物线的焦点F2p,0,当直线的斜率不存在…  相似文献   

16.
<正>性质如图1,点M,N是反比例函数y=k/x(k>0)图像上在第一象限的任意两点.若过点M分别向x轴、y轴作垂线,垂足分别为A、E,过点N分别向x轴、y轴作垂线,垂足分别为F、B,则MN∥EF∥AB.我们设M(a,m),N(b,n),则A(a,0),  相似文献   

17.
定理过点(k,0)作直线AB和抛物线y2=2px(p>0)交于A(x1,y1)、B(x2,y2)两点,则有x1x2=k2,y1y2=-2pk.证明设直线AB的方程为x=my+k,代入y2=2px,有y2-2pmy-2pk=0.因为直线AB与抛物线相交于A(x1,y1)、B(x2,y2)两点,于是y1y2=-2pk.由y21y22=4p2x1x2,得到x1x2=y21y224p2=4p2k24p2=k2.推论(焦点弦定理)若AB是过抛物线y2=2px(p>0)的焦点的弦,且A(x1,y1),B(x2,y2),则有y1y2=-p2,x1x2=p24.在解决某些与抛物线相关问题的时候,应用该定理和推论的内容,能简洁、快速地解题,同时也能达到优化解题过程的目的.例1如图1所示,线段AB过x轴正半轴上一点M(m,0…  相似文献   

18.
抛物线的焦点弦是抛物线定义与性质的交汇点.本文就与其相关的切线探索出若干性质.题目抛物线y2=2px(p>0)上不同两点A、B处的切线交于点Q.求证:若AB过抛物线的焦点F,则(1)AQ⊥BQ;(2)点Q在抛物线的准线上;(3)QF⊥AB.证明设A(x1,y1),B(x2,y2),Q(x0,y0).对于y2=2px求导,有2yy’=2p,得  相似文献   

19.
第21题设A(x1,y1),B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线. (Ⅰ)当且仅当x1 x2取何值时,直线l经过抛物线的焦点F,证明你的结论.  相似文献   

20.
<正>在初中阶段,抛物线除了对称性外,还具有其他们性质[1].本文将给出抛物线内接三角形的一个几何结论,并运用结论快捷地解决有关几何问题.一、一个结论如图1(或图2),若抛物线y=ax2+bx+c(a>0)与直线y=m交于A(x_1,m),B(x_2,m)两点,点Q为抛物线上不与A,B重合的任意一点,直线AQ,BQ分别交抛物线的对称轴于点M,N,则抛物线的顶点P是线段MN的中点.证明由题设,可知  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号