首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
宋庆老师在文[1]末提出了四个不等式猜想,其中猜想1如下: 猜想 若a,b,c是正实数,且满足abc=1,则a2/a+2+b2/b+2+c2/c+2≥1. 文[2]运用均值不等式的变式x2/y≥2x -y(x>0,y>0,当且仅当x=y时等号成立)证明了这个不等式猜想及如下一般性推广: 推广:若a,b,c,λ,μ是正实数,且满足abc=1,则a2/λa+μ+b2/λb+μ+c2/λc+μ≥3/λ+μ.  相似文献   

2.
正姜坤崇老师文[1]中结合具体实例指出,用代换x=bαcα,y=cαaα.z=aαbα可以有效地证明一类条件为x+y+z=1的代数不等式.笔者读后深受启发,反思后发现该代换其实与三角代换x=tanB/2tan C/2,y=tanC/2 tan A/2,z=  相似文献   

3.
文[1]中给出了如下一道关于椭圆的习题:过椭圆x2/a2+y2/b2=1(a>b>0)的右焦点F(c,0)的直线交椭圆于M\ N两点,交y轴于P点,PM→=λ1 MF→,PN→=λ2NF→,求证:λ1+λ2为定值(定值为2a2/c2-a2).  相似文献   

4.
1994年,笔者在[1]中提出了椭圆Г:b2x2+a2y2=a2b2的外伴圆Ω:x2+y2=a2+b2及内伴椭圆Ⅱ:b2x2+a2y2=a4b4/(a2+b2)的概念,证明了Г的任一外切矩形的四顶点均在Ω上,且其切点四边形恰为Ⅱ的外切平行四边形,并得到了这些四边形的面积之间的基本关系.  相似文献   

5.
文[1]介绍了椭圆定点弦的一个结论:命题设P是椭圆x2/a2+y2/b2=1上任意一点,M(-λ,0),M2(λ,0),(其中λ∈R,λ≠0,λ≠±a)是x轴上的两个定点,直线PM1,PM2分别与椭圆相交于P1,P2,过P1,P2的切线交于P′点,则点P′的轨迹  相似文献   

6.
圆锥曲线是解析几何中的重要内容,与圆锥曲线有关的轨迹问题也是教学的一个难点.本文给出圆锥曲线弦的定比分点的轨迹方程的几个通式,并说明它的应用.命题1设斜率为k的直线与椭圆b2x2+a2y2=a2b2(a>0,b>0)相交于A、B两点,动点M满足AM=λMB(λ为常数),则点M的轨迹方程是2(22)2(1)(2222b x+a ky+λ4?λb x+a y?a2b2)(b2+a2k2)=0.证明设点M(x,y),直线AB的参数方程为x0=x+t,y0=y+kt(t为参数),代入椭圆方程并整理得:(b2+a2k2)t2+2(b2x+a2ky)t+b2x2+a2y2?a2b2=0.设点A(x1,y1),B(x2,y2)对应的参数分别为t1,t2,则:22222t1+t2=?2(b x+a ky)/(b+a…  相似文献   

7.
正文[1]、文[2]分别介绍了椭圆、双曲线的如下性质:命题1设点P是椭圆x2/a2+y2/b2=1(a0,b0)上的任一点,  相似文献   

8.
在文[1]里,笔者给出并证明了如下有趣的无理不等式: 问题 设a≥x>1,b≥y>1,c≥z>0,求证:(a+b+c)-(x +y+z)<√a2-x2+√b2-y2+√c2-z2≤√(a+b+c)2-(x+y+z)2.① 等号仅当a:x=b:y=c:z时成立. 下面给出不等式①的几个应用.  相似文献   

9.
<正>问题设椭圆E:x2/a2+y2/b2=1(a>b>0)的中心为O,A、B是椭圆上的两点(A、B、O不共线),求△AOB面积的最大值.对于这个问题,笔者经过探讨,得到了如下两个有趣的结论.定理1设椭圆E:x2/a2+y2/b2=1(a>b>0)的中心为O,A、B是椭圆E上的两点(A、B、O不共线),则当且仅当直线AB与椭圆F:x2/a2+y2/b2=1/2相切时,S△AOB取得最大值1/2ab.  相似文献   

10.
正在文[1],达延俊老师发现椭圆内接直角三角形(顶点均在椭圆上)的斜边与直角顶点间存在恒定不变的统一规律,并且把这一规律用如下定理进行表述:定理1已知RtΔMAN的三个顶点均在椭圆x2a2+y2b2=1(ab0)上,其中直角顶点A(x0,y0),则斜边MN所在直线恒过定点(c2x0a2+b2,-c2y0a2+b2).笔者进一步通过几何画板直观演示,发现顶点均在双曲线上的直角三角形也有类似结论,用如下定理表述:  相似文献   

11.
一个不等式的再推广   总被引:1,自引:0,他引:1  
问题 :已知 a,b,c∈ R~+,则 a/(b + c)+ b/(a + c)+ c/(a + b)≥ 3/2文 [1 ]将其推广为 :设△ ABC的三边为 a,b,c,若 -1 <λ<1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥3λ + 2 ( 1 )本文将 ( 1 )式推广为 :命题 1 已知 a,b,c∈ R+,若 -2 <λ≤1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥ 3λ + 2 ( 2 )若λ=1时 ,( 2 )式显然成立 ,若λ∈ ( -2 ,1 )时 ,令x =λa + b + cy =λb + a + cz =λc+ a + b a =( y + z) - (λ+ 1 ) x( 1 -λ) (λ + 2 )b =( x + z) - (λ + 1 ) y( 1 -λ) (λ + 2 )c=( x + y) - (λ+ 1 ) z( 1 -λ)…  相似文献   

12.
圆锥曲线中的定点问题是教学中多次遇到的问题,也是高考中经常涉及的题型,蕴含着动静依存的辩证关系,反映了变量在变化过程中的特定状态.文[1][2]相继给出了椭圆、抛物线中内接直角三角形斜边恒过定点的性质: 性质1 已知点G(x1,y1)为椭圆E:x2/a2+y2/b2=1(a>b>0)上一定点,M、N是椭圆上异于点G的两不同动点,且满足GM⊥GN,则直线MN恒过定点(c2x1/a2+b2,-c2y1/a2+b2).  相似文献   

13.
文[1]介绍了圆锥曲线中的一个优美性质,本文将文[1]中的相关结论进行推广.性质1如图1已知椭圆x2/a2+y2/b2=1(a>b>0),A,B分别是椭圆的左、  相似文献   

14.
性质1椭圆x2/a2+y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是椭圆上的点,直线OM与ON的斜率之积为-b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2+y2/(1+λ)b21的椭圆;双曲线x2/a2-y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是双曲线上的点,直线OM与ON的斜率之积为b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2-y2/(1+λ)b2=1的双曲线;圆x2+y2=r2,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是圆上的点,直线OM与ON的斜率之积为-1,则动点P的轨迹是方程为x2 +y2=(1+λ2)r2的圆.  相似文献   

15.
在高二教材中的圆锥曲线一章中,有这样的结论: 如图1,若P(x0,y0)是椭圆x2/a2+y2/b2=1(a >b>0)上的一点,那么经过该点的椭圆的切线方程为x0x/a2+y0y/b2=1 问题:若点P(x0,Y0)在椭圆外部(或内部)时, 直线l:x0x/a2+y0y/b2=1是什么样的直线?与椭圆有怎样的关系?  相似文献   

16.
2005年全国高中数学联赛加试第2题为:设正数a,b,c,x,y,z满足cy+bz=a,az+cx=b,bx+ay=c,求函数f(x,y,z)=x2/1+x+y2/1+y+z2/1+z的最小值. 文[1]得到该问题等价于:  相似文献   

17.
上海姜坤崇老师在《数学通报》2013年第2期“数学问题解答”栏目中用柯西不等式证明了2103号问题,即:设a、b、c为△ABC的三边,x、y、z为正数,求证:x2a/b+c-a+y2b/c+a-b+z2c/a+b-c≥xy+yz+zx.当且仅当x/b+c-a=y/c+a-b=z/a+b-c时等号成立.经过研究,笔者通过构造函数得到如下解答:  相似文献   

18.
文[1]得到了椭圆互相垂直的切线的交点的轨迹的一个结论,记为命题1:设l1,l2是椭圆x/a2+y/b2=1(a>b>0)的两条切线,且l1⊥l2,l1,l2交于点P,则点P的轨迹是圆x2+ y2=a2+ b2.  相似文献   

19.
文 [1]的定理 1,2分别为 :定理 1 设 a≠ - 1,b≠ - 1,则 11+ a+11+ b=1成立的充要条件是 ab=1.定理 2 设 a≠ - 1,b≠ - 1,则 a1+ a+b1+ b=1成立的充要条件是 ab=1.我们可将定理 1,2推广为 :定理 3 设 xy≠ 0 ,则 ax+ by=1成立的充要条件是 (x- a) (y- b) =ab(证明略 ) .把定理 3中的 a,b,x,y分别换成 1,1,1+ 1+ b,则得定理 1;把定理 3中的 x,y分别换成 1+ a,1+ b,则得定理 2 .用定理 3解某些最值题或证明某些不等式是比较方便的 ,下面举例说明 .1 求最值例 1 已知 x,y∈ (0 ,+∞ )且 2 x+ y=4,求 1x+ 1y的最小值 .(文 [2 ]例 2 )解 …  相似文献   

20.
最近文[2]对文[1]中关于抛物线的弦对顶点张直角的一个充要条件作了推广,得出椭圆和双曲线的弦对顶点张直角的几个充要条件.本文我们要探讨的问题是将圆锥曲线的顶点改为圆锥曲线上其它任意的一个定点时,若所张角依然为直角,那么弦会过定点吗?反之弦过此定点时,弦所张角会为直角吗?回答是肯定的,即有下面的:定理1设直线l交椭圆xa22+by22=1(a>b>0)于A,B两点,点M(x0,y0)是椭圆上不同于A,B两点的一个定点,则MA⊥MB的充要条件是直线l过定点Nx0(a2-b2)a2+b2,y0(ab22+-ba22).证明先证必要性:设A(x1,y1),B(x2,y2),直线AB:x=ky+m,代入方程x2a2…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号