首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由奇函数、偶函数的图象定理知 :若f( -x) =-f(x) ,则函数f(x)的图象关于原点对称 ;若 f( -x) =f(x) ,则函数 f(x)的图象关于 y轴对称 .下面我们研究此结论的推广情况 .1 若 f(a -x) =-f(a+x) ,则函数f(x)的图象关于点 (a ,0 )对称 ;2 若 f( -x) =2a -f(x) ,则函数f(x)的图象关于点 ( 0 ,a)对称 ;3 若f(a-x) =f(a +x) ,则函数f(x)的图象关于直线x =a对称证明  1 由 f(a-x) =-f(a +x)得 ,函数f(a+x)是奇函数 ,从而函数 f(a+x)的图象关于原点对称 ,由此得函数f(x)的图象关于点 (a …  相似文献   

2.
在函数的性质中 ,周期性占有特殊地位 .本文给出几个在对称条件下函数周期性的一些判定方法及其应用例举 .结论 1 如果一个函数的图象有两条对称轴x=a与x =b,那么这个函数一定是周期函数 .具体地说 ,若函数 y=f(x) ,对于定义域R上的任何x ,都有 f(x) =f( 2a-x) ,f(x) =f( 2b -x) (a≠b) ,则函数 f(x)是周期函数 ,且 2|a-b|为其一个正周期 .证明 对于任一x∈R ,都有f[2 (b-a) +x]=f( 2b-2a +x)=f( 2a-x) =f(x) ,∴y=f(x)是一个周期函数 ,2|a-b|为其一个正周期 .根据结论 1 ,若函数 f(x…  相似文献   

3.
笔者在教研过程中碰到两次活动 :1 在一次校教研活动中 ,听一位老师上课 ,让学生练习 :已知二次函数f(x) =ax2 bx c(a≠0 ) ,如果 f (x1 ) =f (x2 ) (x1 ≠x2 ) ,则f(x1 x2 ) =   (浙江省 1999年会考第 2 4题 ,原题是选择题 )一基础较差的学生举手回答如下 :∵ f(x1 ) =f(x2 ) (x1 ≠x2 ) ,∴x1 =-x2 .∴ f(x1 x2 ) =f(0 ) =c .教师评析 ,这种做法是错误的 ,推理毫无依据 .学生带着难言的神色 ,尴尬地坐下了 .然后教师讲解 :∵ f(x1 ) =f(x2 ) ,∴二次函数对称轴是x =x1 x22 ,∴x1 x2 =-b…  相似文献   

4.
例说与二次函数有关的含有绝对值不等式的证明问题   总被引:1,自引:0,他引:1  
二次函数是最简单的非线性函数之一 ,它有着丰富的内容 ,对近代数学乃至现代数学影响深远 与二次函数有关的含有绝对值不等式的证明问题有一定的综合性与灵活性 ,学生解决此类问题往往感到有一定的困难 本文通过几个例子 ,归纳解决这类问题的一些基本方法 1 已知二次函数在一个区间上的范围 ,求证它在另一个区间上的范围例 1 设f(x) =ax2 +bx+c(a≠ 0 ) ,当|x|≤ 1时 ,总有|f(x) |≤ 1,求证 :当|x|≤ 2时 ,|f(x)|≤ 7.证明 由于f(x)是二次函数 ,|f(x)在 [-2 ,2 ]上的最大值 ,只能是| f( 2 )| ,|f( -2…  相似文献   

5.
二次函数是中学数学中最重要的函数之一 ,有一般式、顶点式、零点式等多种表达式 ,这些表达式在解题中都起着非常重要的作用 .本文介绍二次函数一个新的表达式三点式 ,并举例说明它在解题中的广泛应用 .1 二次函数三点式定理 二次函数 f(x)经过三点A(x1,f(x1) )、B(x2 ,f(x2 ) )、C(x3,f(x3) ) ,则f(x) =(x -x2 ) (x -x3)(x1-x2 ) (x1-x3) f(x1) (x -x3) (x -x1)(x2 -x3) (x2 -x1) f(x2 ) (x -x1) (x -x2 )(x3-x1) (x3-x2 ) f(x3) .证明 设二次函数 f(x) =a(x -x2 ) (x-x3) b(…  相似文献   

6.
20 0 3年的高考山东等省的考生将使用新课程卷。导数是高中数学新教材中增加的内容 ,利用导数求函数的极大 (小 )值 ,求函数在连续区间 [a ,b]上的最大 (小 )值 ,或利用求导法解决一些实际应用 ,也许会成为高考的一个新的热点问题。为此 ,本文举例归纳求导法的应用 ,供师生参考 .1 求函数解析式例 1 设 y=f(x)为三次函数 ,且图象关于原点对称 ,当x=12 时 ,f(x)的极小值为 - 1,求函数f(x)的解析式 .解 设 f(x) =ax3 bx2 cx d(a≠ 0 ) .(因为其图象关于原点对称 ,即 f(-x) =- f(x) ,得ax3 bx2 cx d =…  相似文献   

7.
对于函数 y=f(x) ,要将它的图象进行平移 ,解析式就会出现相应的变化 .变化的一般形式为 y=f(x+a) +b.若a>0 ,则图象左移a个单位 ,a <0 ,则图象右移|a|个单位 ;若b>0 ,则图象上移b个单位 ,b<0 ,图象下移|b|个单位 .在学习过程中 ,有些方程利用现有的知识无法求解 ,但结合函数的图象 ,我们可以确定解的个数或范围 .反之 ,若给出解的某些特征 ,也可以确定方程中参数的取值范围 .现举几例 ,仅供参考 .一、幂函数图象的平移例 1 若函数 y=x-a的图象与其反函数的图象有交点 ,求a的取值范围 .解 首先确定交点的位置 .假…  相似文献   

8.
请先看下面的例子 :例 1 设函数 y =f(x)定义在R上 ,则函数 y=f( 1 -x)与 y=f( 1 +x)的图象关于 (   )(A)直线 y=0对称(B)直线x=0对称(C)直线 y =1对称(D)直线x=1对称学生往往容易错选D .什么原因呢 ?显然 ,学生将本题混同于下面的问题 :例 2 设 y=f(x)是定义在R上的函数 ,若 f( 1 -x) =f( 1 +x) ,则函数 y =f(x)的图象关于直线对称 .在这类问题上产生混淆的现象还很多 ,为此 ,笔者对这类对称问题剖析如下 ,供参考 .探讨函数图象的这类对称问题 ,首先应分清研究对象 ,是讨论某一个函数图象自身的对称问题…  相似文献   

9.
在涉及反函数的一些问题中 ,有时不求反函数 ,反而可以更准确更快捷地解题 .一、求值例 1 若f(x) =3x-4 ,则f- 1 ( 2 ) =.解 设f- 1 ( 2 ) =a ,则f(a) =2 ,即3a-4 =2 ,a=2 ,∴f- 1 ( 2 ) =2 .例 2 已知f(x) =x2 (x≥ 1) ,又f- 1 (m)= 4,则m =.分析 ∵f- 1 (m) =4,∴f( 4 ) =m ,∴m =42 =16.例 3 若f(x) =3x2 +2 (x ≥ 0 ) ,则f- 1 [f( 2 ) ] = .分析 应用结论 :若函数y=f(x) (x∈A ,y∈C)存在反函数y =f- 1 (x) ,则f[f- 1 (x) ] =x(x∈C) ,f- 1 [f(x) ] =x(x∈A) .由上易知f- 1 …  相似文献   

10.
在 2 0 0 2年上海高考题中有这样一道试题 :已知函数 f(x) =x2 +2x·tanθ-1 ,x∈ [-1 ,3 ],其中θ∈ -π2 ,π2 .( 1 )当θ=-π6时 ,求函数 f(x)的最大值与最小值 ;( 2 )求θ的取值范围 ,使 y =f(x)在[-1 ,3 ]上是单调函数 .该题以学生熟知的二次函数知识为载体 ,考查最值和单调函数的掌握情况 .解  ( 1 )当θ=-π6时 ,f(x) =x2 -2 33 x-1=x-332 -43 ,∴x=33 时 ,f(x)的最小值为 -43 .x=-1时 ,f(x)的最大值为2 33 .( 2 )函数 f(x) =(x+tanθ) 2 -1 -tan2 θ图象的对称轴为x =-tanθ,∵y =f(x)在…  相似文献   

11.
定义型试题即试题中给出一个考生从未接触过的新规定 ,要求考生当即应用 ,用以考查考生的接受能力和应变能力 .一、定义新概念例 1  ( 2 0 0 1年上海高考题 )定义 :若函数 f(x)对于其定义域上的某一点x0 ,有f(x0 )=x0 ,则称x0 是 f(x)的一个不动点 .已知函数 f(x) =ax2 +(b+1)x +(b- 1) (a≠ 0 ) .( 1)当a=1,b =- 2时 ,求函数f(x)的不动点 ;( 2 )若对任意的实数b ,函数f(x)恒有两个不动点 ,求a的取值范围 ;( 3)在 ( 2 )的条件下 ,若y=f(x)图象上两个点A、B的横坐标是函数 f(x)的不动点 ,且A、B两点关于…  相似文献   

12.
《中学数学杂志》2 0 0 1年第 6期《曲线的运动与变换》一文中有一个结论是 :“函数y =f(x)定义在R上 ,则函数 y =f(ωx A)与y=f(B-ωx)的图象关于直线x =B-A2 对称” .我认为 ,函数 y= f(ωx A)与 y =f(B -ωx)的图象关于直线x= B-A2ω 对称 .事实上 ,若点M(x0 ,y0 )是函数 y =f(ωx A)图象上任意一点 ,则 y0 =f(ωx0 A) .设点M关于直线x =B-A2ω 的对称点为N(x′,y′) ,则有x0 x′2 =B-A2ωy0 =y′ x′=B -Aω -x0 ,y′=y0因为 f(B -ωx′) =f[B-ω(B-Aω -x0 ) ] =…  相似文献   

13.
回音壁     
编辑部的叔叔阿姨 :你们好 !在学习了一元二次方程以后 ,我遇到一个问题 .请你们帮助解答 .谢谢 !已知x1、x2 是方程ax2 +bx +c =0 (a >0 )的两个根 ,且 0 <x1<1 ,1 <x2 <2 .求证 :a+b +c <0 .内蒙古 李贤李贤同学 :图 1这个问题用一元二次方程的知识来解的确很难 .现在 ,学了函数的知识以后 ,再解这个问题就简单多了 .设y=ax2 +bx +c(a >0 ) ,由已知条件可知 ,这个二次函数的图象如图 1所示 .观察图象 ,当x =1时 ,对应的点在x轴下方 ,所以 ,当x =1时 ,y =a +b +c<0 .解答过程涉及了二次函数与一元二次方程的关…  相似文献   

14.
在闭区间上的二次函数的绝对值不等式的证明有一个通法 :将二次函数的系数用闭区间上的三个函数值 (一般用区间端点和中点的函数值 )来表示 ,然后借助于绝对值不等式来解决 .例 1 设a、b、c∈R ,f(x) =ax2 +bx +c(a≠ 0 ) .若 | f( 0 ) |≤ 1,|f( 1) |≤ 1,|f( - 1) |≤ 1,试证 :对任何x∈ [- 1,1] ,都有 |f(x) |≤ 54 .证明 :因f( 0 ) =c,f( 1) =a +b+c,f( - 1) =a-b +c,故解得a =f( 1) + f( - 1)2 - f( 0 ) ,b =f( 1) - f( - 1)2 ,c=f( 0 ) .∵  |x|≤ 1∴  | f(x) | =|ax2 +bx +c|=f( …  相似文献   

15.
学习了二次函数及其图象后 ,同学们都知道 ,抛物线y =ax2 bx c是轴对称图形 ,它的对称轴是直线x =-b2a,抛物线的顶点在对称轴上 .解决有关二次函数的问题时 ,若能充分应用抛物线的对称性 ,则可给出特别简捷的解法 .例 1 已知抛物线的对称轴为x =-2 ,抛物线与x轴两交点间的距离为 2 ,交y轴于点(0 ,2 ) ,求此抛物线的解析式 .(1 997年江苏省苏州市中考题 )分析 设抛物线的解析式为y =ax2 bx c,按照常规解法 ,需要解关于a、b、c的三元二次方程组 ,从而求得a、b、c的值 .这种解法 ,运算过程是相当繁杂的 .若利用抛…  相似文献   

16.
众所周知 ,若a≥b且a≤b ,则a=b .利用这一结论常能解决一些数学问题 .下面是一道 2 0 0 2年全国联赛试题 :已知 f(x)是定义在R上的函数 ,f( 1 ) =1 ,且对任意x∈R都有f(x+ 5 )≥ f(x) + 5 ,f(x+ 1 )≤ f(x) + 1 .若 g(x) =f(x) + 1 -x ,则g( 2 0 0 2 ) =.解 由 g(x) =f(x) + 1 -x ,得g(x+ 5 ) =f(x + 5 ) + 1 -x-5=f(x + 5 ) -x-4≥ f(x) + 5 -x -4=f(x) + 1 -x =g(x) ,g(x + 1 ) =f(x+ 1 ) + 1 -x -1=f(x+ 1 ) -x≤f(x) + 1 -x =g(x) .∴g(x) ≤g(x+ 5 )≤ g(x + 4)…  相似文献   

17.
根据欲证不等式的某些特点 ,引入适当的函数、数列、方程、图形等 .并利用它们的性质证明不等式的方法 ,称为构造法 .以下分别说明几种常见的构造对象 .一、二次函数对二次函数 f(x) =ax2 +bx+c(α≤x≤ β) ,若a >0 ,则 f(x) ≥ 0 Δ≤ 0 ;-b2a∈(α ,β)时max{ f(α) ,f( β) }≥ f(x) ≥f -b2a ;-b2a (α ,β)时 ,f(x)在 f(α)与f( β)之间 .利用f(x) ≥ 0 Δ ≤ 0证明不等式的方法也称为判别式法 .它的用法是 :当欲证之不等式呈现B2 ≤ ( ≥ )AC这样的与判别式类似的形式时 ,可考虑构造二次函数 ;…  相似文献   

18.
1 .方程问题转化为函数问题一元二次方程 f(x) =0 ,经移项 ,可化为一端是一个二次式 ,另一端是一个一次式或常数项的形式 ,从而得到 φ(x) =ψ(x) .令 y1 =φ(x) ,y2 =ψ(x) ,则函数 φ(x)与 ψ(x)的图象的交点 ,即为f(x) =0的解 .判断一个方程的解的个数问题 ,可用此法求解 .例 1 已知关于x的方程x2 -2x -1-k =0 ,x∈ [-1,2 ] ,k≤ 1,求此方程的实数解的个数 .解 :原方程化为 :(x -1) 2 =2 +k ,-1≤x≤ 2 ,k≤ 1.令y1 =(x -1) 2 (-1≤x≤ 2 ) ,y2 =2 +k(k≤ 1) .在同一坐标系中 ,作出它们的图象 ,如右图 .观…  相似文献   

19.
根据周期函数的定义 ,我们不难得到它的几个判定方法 .定理 1 设a、T是常数且T ≠ 0 ,若 f(x)对定义域内的任意一个x ,满足 f(x+T) =a- f(x) ,则 f(x)是周期函数且它的周期为 2T .证明 f(x + 2T) =f[(x+T) +T]=a-T(x+T) =a- [a-f(x) ]=f(x) ,即 f(x+ 2T)=f(x) .由周期函数的定义可知 ,f(x)是一个以 2T为周期的函数 .定理 2 设T是常数T ≠ 0 ,若 f(x)对定义域内的任意一个x ,满足 f(x+T) =f(x-T) ,则f(x)是周期函数且它的周期为 2T .证明 f(x+ 2T) =f[(x+T) +T]=f[(x+T…  相似文献   

20.
构造法是一种创造性的数学方法 ,它通过在条件和结论之间建立中转站 ,使条件迅速向结论转化 ,不但可以培养人的创造性思维 ,而且更能让人领悟到数学的无穷乐趣和魅力 .这里略举几例 :例 1 已知a ,b ,c∈R ,a +b+c =m ,a2 +b2 +c2 =m22 (m >0 ) ,求证 :0 ≤a≤2m3 .分析 此题关键在于利用已知条件 ,建立a的不等式 ,解得a的最大值 .这里可以消去c得到b的一元二次方程 ,再利用b∈R和Δ≥ 0 ,可以得到a的不等式 ,从而得证 .若构造关于b、c的二次函数 ,则更妙 .解 令f(x) =(x-b) 2 +(x-c) 2 ,则f(x) =2x2 -2…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号