首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
三角中的降幂公式:sin~2α=(1-cos2α)/2,cos~2α=(1 cos2α)/2由倍角公式变形而得,其应用十分广泛.例1.化简cos~2(120° A) cos~2(240° A) cos~2A.解:原式=(1/2)[1 cos(240° 2A)] (1/2)[1 cos(480° 2A)] (1/2)[1 cos2A]=3/2例2.求sin~4 22.5° sin~4 67.5° sin~4 112.5° sin~4 157.5°的值.解:原式=(sin~2 45°/2)~2 (sin~2 135°/2) (sin~2 225°/2)~2 (sin~2 315°/2)~2  相似文献   

2.
一、运用公式基础解法(一)能化为同分母的尽量不通分例1求值sec50°+tan10°.分析:许多学生往往会把此题化为1/cos50°+sin10°/cos10°,通过通分,那么会较繁甚至解不出.而如果能注意再化一下,成1/sin40°+cos80°/sin80°,再用二倍角通分,问题便可迎刃而解.解:sec50°+tan10°=1/sin40°+cos80°/sin80°=2cos80°/2cos40°sin40°+ cos80°/sin80°=(2cos(60°-20°)+cos(60°+20°))/sin80°=(3cos60°cos20°+sin60°sin20°)/sin80°=3(1/2)sin80°/sin80°=31/2(二)两类特殊的三角式求值1.对形如cosαcos2αcos22α…cos2nα的函数式的求值,可用二倍角公式破解,即乘以2sinα再除以2sinα,如此往复,便可以轻解此类题.  相似文献   

3.
利用配对法 巧解高考题   总被引:1,自引:0,他引:1  
研究高考试题的解法,对高考复习具有重要的意义,本文采取配对的方法,可以获得一些高考题的巧解。下面举例说明配对法在解高考题中的应用。 一、和式配对 例1 sin20°cos70° sin10°sin50°的值是( ). A.1/4 B.3~(1/2)/2 C.1/2 D.3~(1/2)/4 (1993年全国高考理科试题) 分析:本题原型见高中《代数(必修)》上册P.190,3(3)题。根据该题的特点,可以利用和差角公式sin(α±β)=Sinαcosβ±cosαsinβ和cos(α±β)=cosαcosβ于sinαsinβ配对解之。 解:设a=sin20°cos70° sin10°sin50°, b=cos20°sin70° com10°cos50°. 则 a b=sin90° cos40°=1 cos40°, ① b-a=sin50° cos60°=1/2 cos40°. ② 由①一②得 2a=1/2,即a=1/4.故选A.  相似文献   

4.
一、问题 求sin10°sin50°sin70°的值。 这是一道常见的三角问题,它由高中课本《代数》(必修)上册中的一道习题“求cos20°cos40°cos80°的值”变更而来。 二、解法分析 1.将其中任意两项结合在一起,然后连续运用积化和差公式变形、计算,得其值为1/8. 2.连续运用二倍角的正弦公式得 原式=cos20°cos40°cos80° =8sin20°cos20°cos40°cos80°/8sin20° =sin160°/8sin20°=1/8 3.依次运用积化和差公式、二倍角的余弦公式和三倍角的正弦公式(教材上例题的结论)得  相似文献   

5.
在解数学题时,我们经常遇到“1”的变形,例如,1=sin~2α cos~2α=sec~2α-tg~2α =cos~2α-ctg~2α; 1=tgα·ctgα=sinα·cscα =cosα·secα; 1=tg45°=ctg45°=sin90°=cos0°; 1=log_ab·log_bα; 1=log_αα=α°; 1=((a 1)~(1/2) a~(1/2))((a 1)~(1/2)-a~(1/2)); (α≥0)  相似文献   

6.
要学会合作     
高中数学第一册(下)4.7 二倍角的正弦余弦正切中的例3化简sin50°(1 3tan10°)这是一道耐人寻味的好题,捕捉其特殊信息,可以开展研究性学习.一、捕捉特殊信息,一题多解1.特殊系数“1”和“ 3”化为“2sin30°”、“2cos30°”方法1:原式=sin50°(1 3sin10°cos10°)=sin50°2(12cos10° 32sin10°)cos10°=sin50°2sin(30° 10°)cos10°=2sin50°cos50°cos10°=sin100°cos10°=cos10°cos10°=12.特殊数字“50°”“10°”之和为“60°”方法2:原式=sin50°cos10° 3sin10°sin50°cos10°=12(sin60° sin40°) 3〔-12(cos60°-…  相似文献   

7.
在三角函数中,我们经常会遇到如下一类型的题:例1已知sin(α 45°)=3/5,45°<α<135°求sinα.大部分学生会如下的解答思路:由两角的正弦公式有:sin(α 45°)=sinαcos45° cosαsin45°3/5.即2~(1/2)sinα 2~(1/2)cosα=3/5,①又sin~2α cos~2α=1.②联立①②解方程可求解.且45°<α<135°,所以sinα>0,cosα<0,进一步可确定sivα的取值.此种解法,需要解方程,其中的运算过程稍显繁琐.若仔细分析已知条件,可以将α化为(α 45°)-45°.45°为特殊角,其正弦值与余弦值均已知;又由α的取值范围可求α 45°的取值范围,整体运用α 45°的三角函数值,从  相似文献   

8.
2~(1/2)(2~(1/2)/2cosθ 2~(1/2)/2sinθ)cos2θ=cos~2θ-sin~2θ=(cosθ sinθ)(cosθ-sinθ) =2~(1/2)(2~(1/2)/2cosθ 2~(1/2)/2sinθ) ·2~(1/2)(2~(1/2)/2cosθ-2~(1/2)/2sinθ), 则得cos2θ=2cos(θ π/4)cos(θ-π/4)或者cos2θ=2sin(π/4 θ)sin(π/4-θ). 应用上面的结论求解某些余弦函数或正弦函数的乘积时则显得简洁又明快,现举例如下. 例1 求证sin15°sin30°sin75°=1/8. 证明:sin15°sin30°sin75°=1/2sin15°sin75°  相似文献   

9.
构造法是数学中常用的也是重要的方法之一.本文将通过构造辅助方程求某些三角函数式的值,而这些三角函数的值都是不易直接求解的。例1 求sin18°的值. 解:设α=18°,那么3α=90°-2α,从而sin3α=cos2α,即 3sinα-4sin~3α=1-2sin~2α, 4sin~3α-2sin~2α-3sinα 1=O.这说明sin18°是方程4x~3-2x~2-3x 1=0的一个根. ∵ 4x~3-2x~2-3x 1=(x-1)(4x~2 2x -1). ∴原方程的根为1,(-1±5~(1/5))/4,于是sin18°=(-1 5~(1/5))/4. 例2 求 cosπ/7-cos2π/7 co3π/7的值。解:设α=π/7,并设原式为y,那么y=cosα cos3α cos5α,从而  相似文献   

10.
题化简sin~2 20° cos~2 50° sin20°cos50°.我想出了这道题的两个解法:解法1 sin~2 20° cos~2 50° sin20°cos50° =1-cos40°/2 1 cos100°/2 cos20°-sin30°/2=2-sin30° (cos100° cos20°)-cos40°/2  相似文献   

11.
在一些参考资料上,经常可以看到这样一道三角题:题目:已知 sinα sinβ=2~(1/2)/2,求 cosα cosβ的取值范围.其解法为:设 cosα cosβ=x,则(sinα sinβ)~2 (cosα cosβ)~2=1/2 x~2,即2 2cos(α-β)=1/2 x~2,∴x~2=3/2 2cos(α-β).∵-1  相似文献   

12.
在统编数学教材中,化asinα bcosα为±(a~2 b~2)~(1/2)sin(α arctgb/a)时,未曾谈及根号前的正负号应该怎样决定(见高一册160页)。学生应用这个公式解题时,往往会出现似是而非的问题。如化3cosα-4sinα为积的形式时,就进行了如下错误的运算: 原式=-4sinα 3cosα=((-4)~2 3~2)~(1/2)sin[α arctg(-3/4)]=5sin(α-36°52′)。有鉴于此,本文仅就推导asinα bcosα=±(a~2 b~2)~(1/2)sin(α φ),(φ=arctgb/a)时,根号前正负号的取舍进行探讨。  相似文献   

13.
全日制高中数学课本第一册,第106页例8:“化asinα bcosα为一个角的一个函数的形式”,是一个很重要的例题,它不但在数学中,而且在物理中有着相当广泛的应用。课本上的解答结论是,asinα bcosα=(a~2 b~2)~(1/2)sin(α φ)(其中φ由tgφ=b/a确定)。我们认为这个结论是不完善的。如sinα 3~(1/2)cosα=2sin(α φ)和-sinα-3~(1/2)cosα=2sin(α φ)都有tgφ=3~(1/2),但显然两式是不相等的。因此,仅由角的正切来确定asinα bcosα=(a~2 b~2)~(1/2)sin(α φ)中的φ势必出错,这在学生的作业中是常见  相似文献   

14.
对于某些三角问题 ,若能合理地构造向量 ,利用向量来解 ,往往可使问题得到快捷方便地解决 ,下面举例说明 .一、求角度【例 1】 若α、β∈ ( 0 ,2 ) ,求满足cosα+cosβ-cos(α + β) =32 的α ,β的值 .解 :原等式化为( 1 -cosβ)cosα+sinβsinα =32 -cosβ ①构造向量a =( 1 -cosβ ,sinβ) ,b =(cosα ,sinα) ,则a·b =( 1 -cosβ)cosα+sinβsinα=32 -cosβ ,|a|·|b|= ( 1 -cosβ) 2 +sin2 β· cos2 α+sin2 α= 2 -2cosβ因 (a·b) 2 ≤|a|2 ·|b|2 ,于是有 ( 32 -cosβ) 2 ≤ 2 -2cosβ整理得 (cosβ-12 ) 2 ≤ 0 ,∴c…  相似文献   

15.
题目已知cosα cosβ=(1/2),sinα sinβ=(1/3),求cos(α-β),sin(α β),cos(α β)及tan((α β)/2)的值.  相似文献   

16.
sinα cosα与 sinαcosα常出现于各类三角问题之中.解决这类问题的关键是灵活运用 sinα cosα与sinαcosα的关系,问题便可顺利获解.基本关系(sinα cosα)~2=1 2sinαcosα基本作用 1.可用 sinα cosα表示 sinαcosα;2.可用 sinαcosα表示sinα cosα;3.设 sinα cosα=t,则sinαcosα=(t~2-1)/2,将三角问题转化成代数问题.  相似文献   

17.
两向量的数量积具有性质 :(a-b) 2 ≥0 ,当且仅当a =b时上式取“=”号 .以下从几个方面举例说明其应用 .1 证明等式例 1 已知a ,b∈R ,且a· 1-b2 b· 1-a2 =1,求证a2 b2 =1.(第三届“希望杯”全国邀请赛试题 )证明 构造向量a=(a ,1-a2 ) ,b= ( 1-b2 ,b) ,则 (a-b) 2 =2 -2 (a·1-b2 b 1-a2 ) =0 ,所以a =b ,从而a =1-b2 ,于是a2 b2 =1.例 2 已知α ,β为锐角 ,且cos4 αsin2 β sin4 αcos2 β= 1,求证α β=π2 .(第三届“希望杯”全国邀请赛试题 )证明 构造向量a =( cos2 αsinβ ,sin2 αcosβ) ,b= (sinβ ,cosβ) ,则 (a-b)…  相似文献   

18.
难点一记忆难例1求下列三角函数值.(1)cos 210°;(2)sin(-(17π)/6).解:(1)cos 210°=cos(180°+30°)=-cos 30°=-(3~(1/2))/2.或者,cos 210°=cos(270°-60°)  相似文献   

19.
高中代数新教材上册212页例10,(旧上册 P_(170)例3).设tgα、tgβ是一元二次方程 ax~2 bx c=0(b≠0)的两个根,求 ctg(α β)的值.教材解法:在一元二次方程ax~2 bx c=0中a≠0,由一元二次方程根与系数关系,得,tgα tgβ=-b/a,tgαtgβ=c/a而ctg(α β)=1/tg(α β)=1-tgαtgβ[]tgα tgβ由题设b≠0,故tgα tgβ≠0,代入,得,ctg(α β)=1-c/a/-b/a=a-c/-b=c-a/b.这种解法很普遍,教材这样解,平时教师学生都这样  相似文献   

20.
题目:已知sin2α=a,cos2α=b,则 tan(α+π4)的值是(  ) (A)b1-a(B)1+ab (C)1+a+b1+b-a(D)a-b+1a+b-1 解法(一):tan(α+π4)=1+tanα1-tanα =sinα+cosαcosα-sinα=cos2α-sin2α(cosα-sinα)2=cos2α1-sin2α =b1-a.故选(A) 解法(二):tan(α+π4)=1+tanα1-tanα =sinα+cosαcosα-sinα=(sinα+cosα)2cos2α-sin2α=1+sin2αcos2α …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号