首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
大家知道,利用数学归纳法来证明某些与自然数n有关的数学命题,关键是证明归纳步骤,即利用n=k命题成立这个假设条件来证明n=k+1时命题也成立。笔者现提出如何证明归纳步骤的一些技巧,供参考。一、要从n=k后条件出发“进”到n=k+1结论。例1.实数列{R_n}中,设R_1=1,R_(n+1)=1+n/R~2。求证:n~(1/2)≤R_n≤n~(1/2)+1。根据归纳法假设,当n=k时,命题成立,即 K~(1/2)≤R_k≤k~(1/2)+1 (1)要证明n=k+1时,命题也成立,即  相似文献   

2.
<正>纵观近几年各地高考数学试卷中的数列题,多可用数学归纳法证明,而且在证明过程中,从归纳假设进行归纳递推这一步,又可通过构造函数搭桥铺路,从而由n=k命题成立顺利递推到n=k+1命题成立.例1数列{an}满足a1∈(0,1),an+1=an-sin an,n∈N*,求证:0相似文献   

3.
一九九四年四川省高中数学联赛(初赛)试题最后一大题(即第七题)的结论是不能成立的.原题为:设非负实数列{a_n}满足 a_(n+1)≤2a_n-4a_n~2证明:a_n≤2/(n+6).(n≥2)此题若用数学归纳法证明,只能证出 n 取第  相似文献   

4.
<正>用数学归纳法证明数学命题时的基本步骤:(1)检验n=n_0(n_0∈N*)时成立;(2)假设n=k(k∈N*,k≥n_0)时成立,由n=k时成立推导n=k+1时成立,于是对一切n∈N*,n≥n_0,命题都成立,这种证明方法叫作数学归纳法。要注意由归纳假设到检验n=k+1的递推。运用数学归纳法证明命题要分为两步,第一步是递推的基础,第二步是递推的依据,这两步缺一不可。  相似文献   

5.
不同形式的数学归纳法是因为它们第二步骤递推方式的不同,如由n=k成立证明到n=k+1成立是第一数学归纳法,由n≤k成立证明到n=k+1成立是第二数学归纳法,那么由n≤k成立证明到n≤2k成立是不是数学归纳法呢?  相似文献   

6.
数学归纳法是一种重要的数学方法,运用数学归纳法证题的步骤是:(1)证明当n取第一个值n0(n0≥1)时,命题成立;(2)假设n=k(k∈N*且k≥n0)时命题成立,从而推出当n=k+1时,命题也成立.根据(1)、(2)可知,对一切n∈N*(n≥n0)命题成立.数学归纳法的第一步是验证命题的基础,第二步是论证命题的依据(传递性成立),两个步骤密切相关,缺一不可.需要注意的是:步骤(1)一般选取命题中最小的正整数n0作为起始值进行验证;步骤(2)推证当n=k+1时命题成立的前题,必须是当n=k时命题成立这个归纳假设,否则推理无效.作差法若命题中有关于n的连加式或数列的前n项和,则…  相似文献   

7.
在近年的高考数学试题中 ,常以数列递推式中不等式的证明作为能力型试题 .这类问题综合性强、思维容量大、能力要求高 ,是同学们感到很棘手的一类问题本文通过具体的例子说明解这类问题的几种常用方法 .一、数学归纳法例 1 已知数列 an ,对任意n∈N ,均有an >0 ,且a2 n ≤an-an + 1 ,求证 :当n≥ 2时 ,an <1n +1.证明  ( 1)当n =2时 ,a2 ≤a1 ( 1-a1 )≤ a1 +( 1-a1 )22=14 <13 =12 +1.命题成立 .( 2 )假设当n =k(k≥ 2 )时 ,命题成立 ,即有   ak <1k+1≤ 13 (k≥ 2 ) .当n =k +1时 ,由题设有ak+ 1 ≤ak-a2 k.令 f(x) =x-x2 ,则f(x) =…  相似文献   

8.
数学归纳法在证明数列和不等式有关的问题时,关键的一步是根据假设n=k命题成立,证得n=k+1时,命题也是成立的,这个也是数学归纳法处理这类问题的一个难点。  相似文献   

9.
数学归纳法是数学中一种重要的证题方法,常用来证明与自然数n有关的数学命题。用数学归纳法证明的一般步骤是: 第一步:验证当n取第一个值时,(如n=1或 n=2等)这个命题的结论是正确的。 第二步:假设当n=k(k为自然数时命题的结论正确。在这个基础上证明当n=k 1时,这个命题的结论正确。 数学归纳法中,第一步是递推的基础,第二步是递推的根据,两步缺一不可。 1.证明数列各项和的问题 证明数列各项和的问题时,可在归纳假设的两边,同加上第k 1项,然后用数学公式,对右边进行运算,  相似文献   

10.
<正>数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法。它的基本步骤是:(1)验证n=n0时,命题成立(归纳奠基);(2)在假设当n=k(k≥n0,k∈N+)时命题成立的前提下,推出当n=k+1时,命题成立(归纳递推)。根据(1)(2)可以断定命题对一切大于等于n0的正整数n都成立。数列问题是与正整数有关的问题,本文就来谈谈数学归纳法在数列中的应用。例1已知正项数列{bn}的前n项和  相似文献   

11.
数学归纳法是高中数学解题过程中经常运用到的一种科学的证明方法,对于数学思维的培养也非常重要,解决问题具有实效快速等优点.一般地,数学归纳法有2个步骤:1证明当n取第1个值时,命题成立.2逻辑推理过程.假设n=k成立,作为可以运用的条件,再结合n=k+1时的情况,利用已知条件和假设条件,通过相关的定理、公理等加以证明,从而推导出n=k+1时结论也成立.以上是第一归纳法的证明步骤,还有第二数学归纳法、倒推归纳法等,在这里不一一列举.  相似文献   

12.
读者信箱     
贵刊92年第5期《递推数列不等式的若干证法》中的例5证明有误。原题及证明如下:已知正项数列{a_n}满足a_n~2≤a_n-a_(n+1)(n≥1)。证明:a_n<1/n(n≥1)。证明设a_n=t/n,则a_(n+1)=t/(n+1)。代入条件a_n~2≤a_n-a_(n+1)并整理得t~2(n+1)≤nt。解得0≤t≤n/(n+1)<1,从而,a_n=t/n<1/n。这个证法犯了用“特殊代替一般”的错误。从“设a_n=t/n,则a_(n+1)=t/(n+1)”可以看出,变量t是与n无关的变量,这在题目已知条件中是没有的。上述证法只是证  相似文献   

13.
证明与正整数有关的命题时,常用数学归纳法,用数学归纳法证明的步骤是:(1)证明当n取第一个值n_0(n_0是满足命题的最小正整数)时,命题成立.(2)假设当n=k(k≥n_0,k∈N~*)时命题成立,证明当n=k+1时命题也成立.(3)由(1)(2)可知,命题对于从n_0开始的所有的正整数都成立.  相似文献   

14.
数学归纳法是证明与自然数有关的数学命题的一种严密的证题方法。其证题步骤为:(1)证明当n取第一个值n_0(例如n_0=1或2等)时结论正确;(2)假设当n=k(k∈N,k≥n_0)时结论正确,证明当n=k+1时结论也正确。对于初学者来说,稍不注意,就会出现  相似文献   

15.
极限与导数     
课时一 数列归纳法 基础篇 诊断练习一、选择题1.用数学归纳法证明 1n +1+1n +2 +… +12 n>132 4 时由 k到 k +1,不等式左端变化是 (   )( A)增加 12 ( k +1) 一项 .( B)增加 12 k +1和 12 k +2 二项 .( C)增加 12 k +1和 12 k +2 二项且减少 1k +1项 .( D)以上结论均错 .2 .用数学归纳法证明 1+12 +13+… +12 n - 11) ,第一步是证明不等式 (   )( A) 1<2成立 .  ( B) 1+12 <2成立 .( C) 1+12 +13<2成立 .( D) 1+12 +13+14 <2成立 .3.若命题 p( n)对 n =k成立 ,可以推出它对 n =k+2也成立 ,又若 p( n)对 n =2成立 ,则 (…  相似文献   

16.
对于一个数列{a_n}、若它的通项可以分成某一新数列的相邻两项的差,而a_n=b_(n 1)-b_n或a_n=b_n-b_(n 1)(n=1,2,…),则容易求得其前n项和 S_n=b_(n 1)-b_1或S_n=b_1-b_(n 1), [例1] 现行高中课本代数第二册第79页28题: 用数学归纳法证明: 1/2tgx 1/2~2tg(x/2~2) … 1/2~ntg(x/2~n)=1/2~nctg(x/2~n)-ctgx(x≠kπ、k∈Z) 分析:等式左边是数列{1/2~ntg(x/2~n)}的前n项和S_n,下面用分项求和法求S_n。解:设a_n=1/2~ntg(x/2~n),则由三角学中的公式得。  相似文献   

17.
由归纳法得到的某些与自然数有关的数学命题,我们常常用下面的方法来证明它们的正确性:先证明当 n 取第一个值 n_0(如 n_0=1时,命题成立,然后假设当 n=k(k≥n_0),命题成立,证明n=k 1时命题也成立.就可以断定这个命题对于 n 取第一值及其后的所有的自然数也都成立.这种证明方法叫做数学归纳法.数学归纳法,是我们数学证题中的一种重要的证题工具.对于数学归纳法,学生往往难以理解它的实质,对它的证题步骤往往是在形式上有所了解,  相似文献   

18.
数列是高中数学的重点内容,它与数、式、函数、方程、不等式等有着密切的联系.求解数列问题往往涉及到重要的数学思想方法.为此,笔者结合多年的教学经验,对解决数列问题的常用方法作了一些探讨.一、数学归纳法数学归纳法比较典型地用于这两类题目中:1.确定一个表达式在所有自然数范围内是成立的;2.确定一个其他的形式在一个无穷序列是成立的.因此它是解决数列问题的常用方法之一.例1已知数列{an}中,a1=-23,其前n项的和Sn满足an=Sn S1n (2n≥2),计算S1,S2,S3,S4.猜想Sn的表达式,并证明.解析:当n≥2时,an=Sn-Sn-1=Sn S1n 2,Sn=-Sn-11 (2n≥2).求出S1,S2,S3,S4的值后,猜想Sn=-nn 21.证明(:1)当n=1时,S1=-23=a1,结论成立.(2)假设n=k时,猜想成立,即Sk=-kk 12成立.那么n=k 1时,Sk 1=-Sk1 2=--kk 112 2=-kk 23=((-kk 11)) 12.即n=k 1时,猜想成立.综合(1)(、2),可知猜想成立.点评:数学归纳法的重难点是处理好n=k 1时的情况.二、裂项相消法裂项相消法...  相似文献   

19.
数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是:1°验证:n=1时,命题成立;2°在假设当n=k(k≥1)时命题成立的前提下,推出当n=k+1时,命题成立.根据1°,2°可以判定命题对一切正整数n都成立.数学归纳法的两个步骤("归纳奠基"和"归纳递推")是缺一不可的.使用数学归纳法证明时,只有把两个步骤结  相似文献   

20.
用数学归纳法证题的两个步骤中,第二步骤是假设当n=k时命题成立,然后利用这“归纳假设”去论证当n=k 1时命题也成立。这第二步证明的实质是解决命题成立的延续性问题。本文通过一些典型例题,给出一套证明方  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号