首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
例说向量的广泛应用   总被引:1,自引:0,他引:1  
高考命题中对知识综合性的考查 ,往往在知识网络交汇点上设计试题 ,而向量则是三角函数、解析几何等多学科知识的交汇点 ,因此也是新高考的命题热点 .例 1 已知 (x-1) 2 + (y-2 ) 2 =2 5 ,求3x+ 4y的最值 .解 设a =(3 ,4) ,b =(x-1,y -2 ) ,a与b的夹角为θ,则3x + 4y =a·b + 11=|a||b|cosθ+ 11=2 5cosθ + 11.∴ 3x+ 4y的最大值为 3 6,最小值为-14 .例 2 已知x2 + y2 =4,a2 +b2 =6,求ax +by的最值 .解 设a=(x ,y) ,b=(a ,b) ,a与b的夹角为θ ,则ax +by =a·b=|a||b|cosθ…  相似文献   

2.
向量不仅是解决立体几何、解析几何的有力工具 ,也是解决代数和三角问题的有力工具 ,它可使许多代数和三角问题的求解过程变得轻松 ,生动 ,给人以数学美的享受 .它为解决中学数学问题开避了一条新的途径 .一、比较大小例 1 已知a ,b∈R ,0 <x<1,试比较a2x + b21-x 与 (a +b) 2 的大小 .解 设向量m=ax,b1-x ,n=(x ,1-x) .由 (m·n) 2 ≤|m|2 |n|2 ,得(a +b) 2=ax·x + b1-x· 1-x2≤ a2x + b21-x x+ (1-x)=a2x + b21-x.例 2  (2 0 0 0年河北省高中数学竞赛试题 )已知a ,b∈R ,m ,n∈R+…  相似文献   

3.
对于某些不等式的证明 ,若认真分析题目的条件和结论 ,构造适当的向量 ,然后借助向量的数量积的性质|m·n|≤|m|·|n| ,往往可以使某些不等式得到证明 .例 1 已知a ,b∈R ,求证 :a +b22 ≤ a2 +b22 .证明 设m =(a ,b) ,n =( 1,1) .由 |m·n|2 ≤|m|2 ·|n|2 ,得(a +b) 2 ≤ (a2 +b2 )· 2 ,∴ a +b22 ≤ a2 +b22 .例 2 设a ,b ,c,d∈R .证明 :ac+bd≤ a2 +b2 · c2 +d2 .证明 设m =(a ,b) ,n =(c,d) .由|m·n|≤|m|·|n| ,得|ca+bd|≤ a2 +b2 ·c2 +d2 …  相似文献   

4.
若x2a2 +y2b2 =1,则有不等式a2 +b2 ≥ (x±y) 2 .这个不等式很容易证明 :a2 +b2 =(a2 +b2 ) x2a2 +y2b2=x2 +y2 +b2 x2a2 +a2 y2b2≥x2 +y2 +2xy=(x +y) 2 ,用 -y代y ,得a2 +b2 ≥ (x -y) 2 .由于条件是椭圆的方程 ,所以我们称上面的不等式为椭圆不等式 .这个不等式的应用很广泛 ,特别是用来求“希望杯”数学竞赛中二元函数的最值或值域问题时显得更加简便 .一、求二元函数的最值例 1 已知a ,b∈R且a +b+1=0 ,求(a -2 ) 2 +(b-3 ) 2 的最小值 .解 设 (a-2 ) 2 +(b -3 ) 2 =t,则(a-2 ) 2…  相似文献   

5.
平均值不等式定理 :若a,b∈R+,则a +b2 ≥ ab ,当且仅当a=b时 ,取等号 .若用它来求最值 ,需 a+b2 、ab之一为定值 .同时 ,利用平均值不等式求值域必须注意正值、定值、相等 3个条件 .一、当缺少正值条件时例 1 求函数 y=x +1x 的值域 .分析 此时x、1x 不一定是正值 ,不能直接应用定理 ,应将其转化为正值 .解法 1 ∵x、1x 同号 ,∴|y|=|x|+1|x| ≥ 2 ,当且仅当x=1x,即x=± 1时 ,取等号 .∴值域为 { y|y≥ 2或 y≤-2 }解法 2 当x>0时 ,y=x +1x ≥ 2 ,当且仅当x=1时取等号 ;当x <0时 ,y =x +1…  相似文献   

6.
一、忽视向量夹角范围例 1 若向量a =(x ,2x) ,b =( - 3x ,2 ) ,且a ,b的夹角为钝角 ,求x的取值范围 .错解 :因a ,b的夹角为钝角 ,故a·b <0 .即 - 3x2 +4x <0 ,x <0或x >43.故x的取值范围为 ( -∞ ,0 )∪43,+∞ .辨析 :向量a ,b的夹角θ的取值范围为 [0 ,π] ,当a·b <0时 ,π2 <θ≤π .而已知θ为钝角 ,故θ≠π ,即cosθ =a·b|a||b|≠ - 1,解得x≠ - 13,故x的取值范围为-∞ ,- 13∪ - 13,0∪ 43,+∞ .例 2 设正三角形ABC的边长为 1,AB =c,BC =a ,CA =b ,求a·b +b·c+c·a的值 .错…  相似文献   

7.
研究庞大的生物体从研究细微的细胞开始 ,同样的道理 ,对错综复杂的不等式研究 ,可以从对一些最为简单的不等式的探索开始。本文旨在探讨一个不惹人注意的简单不等式 :x y≤ 2 (x y) (其中x、y∈R ) ( )(当且仅当x =y时 ,等式成立 )证明不难 : 依基本不等式x y≥ 2xy,知(x y) 2 =(x y) 2 xy≤ (x y) (x y) =2 (x y) ,两边开平方 ,即得x y≤ 2 (x y) 。不等式 ( )的结构简单 ,而应用却十分广泛。1 求不等式恒成立时的参数最值例 1 若正数a使不等式 x y≤a x y对一切正数…  相似文献   

8.
定理 若x、y、a、b均为实数 ,且a>0 ,b >0 ,那么 x2a +y2b ≥ (x+y) 2a +b (※ )等号成立当且仅当 xa= yb .证明 不等式 (bx-ay) 2 ≥ 0显然成立 ,当且仅当 xa =yb 时取等号 .从而b2 x2 - 2abxy +a2 y2 ≥0 ,所以b2 x2 +a2 y2 ≥ 2abxy .不等式两边都加上abx2 +aby2 ,得abx2 +a2 y2 +b2 x2 +aby2 ≥abx2+2abxy+aby2 ,所以 (a+b) (bx2 +ay2 ) ≥ab(x +y) 2 .因为a >0 ,b>0 ,所以 x2a +y2b ≥ (x +y) 2a+b .不等式 (※ )结构规范 ,对称和谐 ,形式…  相似文献   

9.
二维柯西不等式 :设a、b、c、d∈R ,则有(a2 b2 ) (c2 d2 )≥ (ac bd) 2 .当且仅当 ac =bd 时 ,不等式取等号 .1 推证几个重要结论命题 1 椭圆 x2a2 y2b2 =1与直线Ax By C =0有公共点的充要条件是A2 a2 B2 b2 ≥C2 .证明 由柯西不等式得(Ax By) 2 =Aa· xa Bb· yb2≤A2 a2 B2 b2 x2a2 y2b2 .若 (x0 ,y0 )是已知椭圆和直线的公共点 ,则满足x20a2 y20b2 =1、Ax0 By0 C =0 ,则上述不等式左边为C2 ,右边为A2 a2 B2 b2 ,充分性得证 .若 (x ,y)是直线上…  相似文献   

10.
探索整数解     
方程 (组 )和不等式 (组 )的整数解问题 ,内涵丰富 ,综合性强 ,其中不乏体现了对数学知识的贯穿、数学思想的渗透、数学方法的运用 ,对灵活运用数学知识解决数学问题的技能培养和训练更是颇有益处的 .本文就常见的整数解问题 ,例谈相应的思考策略 .1 一次方程的整数解例 1 方程 17x -2 4y =6的正数解中最小的一个 y是 .思考策略 不定方程ax+by=c(a、b、c都是整数 ,且a、b都不是 0 )有整数的条件是 (a ,b) |c .此方程显然有正整数解 ,可以将其变形为y=17x-62 4,解得ymin =4.2 一次方程组的整数解例 2 求 5x+ 3…  相似文献   

11.
先介绍以下结论 :如果a =(a1 ,a2 ,a3) ,b =(b1 ,b2 ,b3)为平面α上的两个不共线向量 ,又n =(x ,y,z) ,且n·a=a1 x +a2 y +a3z =0 ,n·b =b1 x+b2 y+b3z=0 ,则n⊥平面α ,向量n叫做平面α的法向量 .利用平面α的法向量n,可解决立体几何中有关线面夹角、线面垂直、面面垂直、求二面角的大小和求点到平面的距离等问题 ,且思路清晰 ,解题快捷、准确 .以下举例说明它的应用 .一、直线与平面垂直要证直线与平面垂直 ,只要直线上的向量与该平面的法向量平行即可 .例 1 在棱长为 1的正方体ABCD -A1 B1 C1 …  相似文献   

12.
一、填空题 (15分 )1 用科学记数法表示 - 0 0 0 0 0 0 0 0 0 10 2 9=.2 不等式组12 x≥ 1x - 3≤ 0的解集是 .3 (x -a) (x a) (x4 a4 ) (x2 a2 ) =.4 当x时 ,代数式13(x - 1)5的值不是正数 .5 方程组 ax by =13ax - 4by =18和 4x - y =53x y =9有相同的解 ,那么a b的值为 .6 若 |x 1| (y - 2 ) 2 =0 ,则xy =.7 若有理数a满足 a|a|=- 1,则a是 .8 若 11- |1-x|有意义 ,则x取 .9 12 5a3b3÷ 5ab =.10 [(-x) 3]4 =.11 若a <0 <b ,且 |a|>b ,则化简 |a b|- |a -b|- |b -a|=.12…  相似文献   

13.
向量是新编高中数学的基本内容 .向量的引入可以启迪学生从一个新的角度分析、解决一些综合问题 ,有益于开发学生智力 ,提高学生能力 .下面就近几年高考题中的部分解析几何题目用向量法给予解答、阐述 .1 利用两个非零向量 a =(x1,y1) , b =(x2 ,y2 )的数量积 a· b=x1x2 +y1y2 .例 1  (2 0 0 0年全国高考题 )椭圆 x29+y24 =1的焦点为F1、F2 ,点P为其上的动点 ,当∠F1PF2 为钝角时 ,点P横坐标的取值范围是 .解 由题意设P(x0 ,y0 ) ,F1(- 5 ,0 ) ,F2 (5 ,0 ) ,则PF1=(- 5 -x0 ,-y0 ) ,PF2 =(5 -x0 ,-…  相似文献   

14.
1 求证 :sin2 0 0 3° >12 ·cos2 0 0 2°。  (不要使用计算器等工具。)2 试求出两条抛物线 y2 =2 5 -6x与x2 =2 5 -8y的所有的交点的坐标。 (不要使用一元四次方程求根公式。)3 试求出所有的有序正整数对 (a ,b) (a≤b) ,使得a能整除b2 +b +1 ,且b能整除a2 +a +1。4 试求出所有的函数 f :R -{0 ,1 }→R -{0 },使得对于任何的满足“x·f(y) ,y -x∈R -{0 ,1 }”的x∈R -{0 },y∈R -{0 ,1 },都有  f(x·f(y) ) =(1 -y)·f(y -x)。5 试求出所有的函数 f :R→R ,使得对于任何的x、y∈…  相似文献   

15.
大家知道 ,一元二次方程ax2 +bx +c=0 (a≠ 0 )根的判别式Δ =b2 - 4ac有着广泛的应用 .下面就用Δ≤ 0求某些函数最值谈谈它的应用 .例 1 若x、y、z为正实数 ,且x + 3y + 5z =15,求 x + 5y+ 2z的最大值 .解 :设函数f (m ) =(x + 3y + 5z)m2 + 2 (x + 5y + 2z)m +1+ 532 + 252 =( xm + 1) 2 + 3ym + 532 + 5zm + 252≥ 0 ,x + 3y + 5z=15>0 ,所以Δ =4 (x + 5y+ 2z) 2 - 4(x + 3y + 5z) 1+ 53+ 25≤ 0 .即x +5y+ 2z≤ 4 6 .易得等号可以成立 ,故所求式的最大值为 4 6 .例 2 设θ为锐角 ,求…  相似文献   

16.
文 [1]应用待定系数法和柯西不等式给出了下面函数的最小值 .定理 1 函数y=asinx+bcosx,x∈ (0 ,π2 ) ,a、b为正常数 ,则 ymin =(a23 +b23 ) 32 .本文应用二元赫尔德 (Holder)不等式给出上面定理 1的推广 .定理 2 函数y =asintx +bcostx(x∈ (0 ,π2 ) ,a、b为正常数 ,且t∈R ,(t≠ 0 ,2 ) ,在x =arctan(ab) 12 -t处取得最值 (a22 -t+b22 -t) 2 -t2 ,其中(1)当t∈ (0 ,2 )时 ,y取最大值 ;(2 )当t∈ (2 ,+∞ )时 ,y取最小值 ;(3)当t∈ (-∞ ,0 )时 ,y取最小值 .引理 …  相似文献   

17.
培养学生的数学意识和学会数学的应用 ,是中学物理教学的任务之一 .中学物理中的极值问题是融物理与数学、知识与能力为一体的 ,综合性强 ,技巧性高 ,难度较大的一类专题 .这类问题在高考中也屡见不鲜 .本文就一个函数最值模型谈谈它在物理问题中的应用 .1 求函数y=sin2 θ·cosθ( 0 <θ <π/2 )的最值在数学中学习过“任意个正数的算术平均数不小于它们的几何平均数 .”即当a1、a2 、…an 均为正数时 ,不等式 1n(a1+a2 +… +an)≥ na1·a2 …an恒成立 ,当且仅当a1=a2 =… =an 时取等号 ,这时a1·a2 ·…·a…  相似文献   

18.
圆锥曲线方程中的两个变量有其固有的取值范围和关系 ,方程中的特征量也有其确定的取值范围和关系 .如椭圆方程x2a2 +y2b2 =1  (a>b >0 )中的变量x、y满足 -a≤x≤-a ,-b≤y≤b,方程本身正反映了变量x、y间的这种关系 ;椭圆的特征量间的关系有 0 <e =ca <1,a >b>0 ,a2c >a ,a2-b2 =c2 ;椭圆的左、右顶点到相应准线的距离 a2c -a是椭圆上的点到准线的距离的最小值 ;椭圆上的点P(x0 ,y0 )到焦点F1 (-c,0 )、F2 (c,0 )的距离分别为|PF1 | =a+ex0 、|PF2 |=a -ex0 ,所以有b2≤|PF1 |…  相似文献   

19.
一、在使用均值不等式时 ,容易忽略各项均为正数的前提条件例 1 求函数 y =x + 1x(x∈R且x≠ 0 )的值域 .错解 :∵ y =x + 1x≥ 2x·1x =2 ,∴ 函数的值域为 [2 ,+∞ ) .剖析 :令x =- 1,则 y =- 2 .显然 y =2不是最小值 .错误原因是忽视了变数应为正数的条件 .正解 :因x≠ 0 ,故 |x| >0 ,又x与 1x同号 ,∴  | y| =x + 1x =|x| + 1|x| ≥ 2 |x|· 1|x| =2 .y≤ - 2或 y≥ 2 .∴ 函数的值域为 ( -∞ ,- 2 ]∪ [2 ,+∞ ) .二、在使用均值不等式时 ,容易忽略等号成立的条件例 2 已知x∈ - π2 ,π2 ,求 y=c…  相似文献   

20.
一、选择题 (每小题 5分 ,共 50分 ,以下每题的4个选项中 ,仅有一个是正确的 ,请将表示正确答案的英文字母填在每题后面的圆括号内 )1 .方程sinπx =0 .2 5x的解的个数是 (   )  (A) 5   (B) 6   (C) 7   (D) 82 .当 0 <x <1时 ,记a =xx,b =(arcsinx) x,c =xarcsinx,下列不等式中成立的是 (   )  (A)a<b <c   (B)a<c<b  (C)c<a <b (D)c<b <a3 .If 2|a|<4+b,|b| <4,thenthesetofrealrootsoftheequationx2 +ax+b =0is(   …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号