首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在中学数学教学研究的期刊上常出现下述平均值不等式: 设以a,b∈(0,+∞),则a2+b2/a+b≥√a2+b2/2≥a+b/2≥√ab≥2ab/a+b. 本文将给出这五个平均值不等式之间的“问距”大小关系. 命题 设a,b∈(0,+∞),记△1=a2+b2/2-√a2+b2/2,△2=√a2+b2/2-a+b/2,△3=a+b/2-√ab,△4=√ab-2ab/a+b,则△3≥△1≥△2≥△4.等号当且仅当a=b时成立.  相似文献   

2.
不等式a~3+b~3+c~3≥3abc的证法及推广   总被引:1,自引:0,他引:1  
现行教材中三元基本不等式 :“若 a,b,c∈R+ ,则 a3+ b3+ c3≥ 3 abc,当且仅当 a =b =c时 ,等式成立 .”是用因式分解方法证明 ,但分解需要一定技巧 .笔者在教学中了解 ,学生除了欣赏很难掌握 .笔者从学生已有的知识出发 ,通过证明一般的情况 ,导出三元基本不等式的证明 .要证上述“若 a,b,c∈ R+ ,则 a3+ b3+ c3≥ 3 abc,不等式成立 .”学生已有的知识是 :若 a∈ R+ ,a≥ a成立 ,(a∈ R也成立 )若 a,b∈ R+ ,a2 + b2 =2 ab成立 ,当且仅当 a =b时 ,等式成立 .(a,b∈ R也成立 ) ,自然联想 :a,b,c,d∈ R+ ,a4 + b4 + c4 +d4≥ 4abcd是否成…  相似文献   

3.
一、等式与不等式的转化例1若正数a,b满足ab=a+b+3,则ab的取值范围是______.分析为了求ab的取值范围,只要将原等式转化为不等式即可.解运用不等式a+b≥2ab姨,原等式可化为不等式.∵ab=a+b+3≥2ab姨+3,∴ab-2ab姨-3≥0.又ab姨>0,∴ab姨≥3,即ab≥9.例2已知不等式a2+b2+c2+4≤ab+3b+2c,求正整数a,b,c.分析本题所给的是不等式,而求的是a,b,c,故应将原不等式转化为3个等式,才能解决问题.解∵不等式的两边是整数,∴将a2+b2+c2+4≤ab+3b+2c配方得(a-b2)2+3(b2-1)2+(c-1)2≤0.则有a-b2=0,b2-1=0,c-1=0,∴原不等式有唯一的一组解a=1,b=2,c=1.二、常…  相似文献   

4.
借助基本不等式: a+b≥2ab或ab≤((a+b)/(2))2,a,b∈R+; a+b+c≥33abc或abc≤((a+b+c)/(3))3,a,b,c∈R+.  相似文献   

5.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

6.
在解题过程中 ,我们经常遇到形如a +b +c =0的条件 ,笔者在教学中发现 ,在此条件下有许多简捷、优美的结论 ,且有着广泛的应用。为此 ,本文探讨在条件a +b+c=0下的结论及相应的解题功能 ,供参考。1 结论结论 1 若a +b +c =0 ,则b2 ≥ 4ac或a2 ≥ 4bc或c2 ≥ 4ab。证明 因为a +b +c=0 ,所以b =-(a +c) ,b2 =(a +c) 2 =a2 +c2 +2ac≥ 2ac+2ac=4ac ,即b2 ≥ 4ac,同理可得a2 ≥ 4bc,c2 ≥ 4ab ,命题得证。结论 2 若a +b+c=0 ,则a3+b3+c3=3abc。证明 因为a +b +c=0 ,所以有a +b =-c,(a +b) 3=-c3,即a3+3a2 b +3ab2 +b3+c3=0 ,也即a3+3ab(a +…  相似文献   

7.
正人们知道,对于任意实数x,y,z,有如下不等式成立:(x+y+z)2≥2(xy+yz+zx).①若令x=ab,y=bc,z=ca,则如上不等式等价于:对于任意实数a,b,c,有不等式.(ab+bc+ca)2≥3abc(a+b+c)②这是一个十分简单的不等式,利用不等式②,却能够给出一些不等式竞赛试题简捷、明快的证法,本文提供一些例子,供读者探究和玩味.例1(2005年台湾竞赛题)设a,b,c是满足abc=1的正  相似文献   

8.
<正>近日,笔者发现了一个关于三角形边长的不等式链,现介绍如下.命题在△ABC中,a,b,c分别为其三边长,R,r分别为其外接圆和内切圆半径,则有a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc≥(4-2r/R)abc≥3abc.证明先证明a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc.  相似文献   

9.
(本讲适合高中 )比较几个数的大小 ,涉及的内容有指数对数的运算、三角函数运算、函数的周期性和单调性、不等式等诸多方面的知识 ,内容具有一定的综合性 ,可以考察学生多方面的能力 ,是数学竞赛的常见试题 ,也是中学数学教学的重要内容 .1 基础知识1 .1 基本不等式 :若a ,b ,c∈R+ ,则a +b≥2ab ,a +b +c≥ 3 3 abc ,或ab≤ ( a +b2 ) 2 ;abc≤( a +b +c3 ) 3.利用基本不等式是比较大小最常用的方法之一 .1 .2 函数单调性 :①若 f(x)是增函数 ,x1,x2 ∈D且x1f…  相似文献   

10.
<正>命题在△ABC中,a、b、c分别为其三边长,R、r分别为其外接圆和内切圆半径,则有a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc≥4-2r()Rabc≥3abc.证明先证明a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc.由于a、b、c是三角形的三边长,所以有a+b>c,即a+b-c>0,同理有b+c-a>0,c+a-b  相似文献   

11.
宋庆老师在文[1]末提出了四个不等式猜想,其中猜想1如下: 猜想 若a,b,c是正实数,且满足abc=1,则a2/a+2+b2/b+2+c2/c+2≥1. 文[2]运用均值不等式的变式x2/y≥2x -y(x>0,y>0,当且仅当x=y时等号成立)证明了这个不等式猜想及如下一般性推广: 推广:若a,b,c,λ,μ是正实数,且满足abc=1,则a2/λa+μ+b2/λb+μ+c2/λc+μ≥3/λ+μ.  相似文献   

12.
一道IMO预选题的推广   总被引:1,自引:0,他引:1  
第37届(1996年)IMO中有如下一道预选题:若a,b,c,∈(0,+∞),且abc=1.试证: (ab)/(a5+b5+ab)+(bc)/(b5+c5+bc)+(ca)/(c5+a5+ca)≤1.  相似文献   

13.
我们可以验证,若a、b、c∈C则关于a3+b3+c3-3abc有以下恒等式成立:(1)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca).(2)a3+b3+c3-3abc=1/2(a+b+c)[(ab)2+(b-c)2+(c-a)2].(3)设w2+w+1=0(即w=((-1+(3i)(1/2))/1)  相似文献   

14.
文[1]建立了如下关于三角形中线长的一个有趣的不等式:若ma,mb,mc分别是△ABC的三条中线长,R、r为△ABC外接圆和内切圆半径,则有22222ma mb mc rbc+ca+ab≥+R.研究发现并获得如下加强形式及其对偶不等式.1加强定理1若ma,mb,mc分别是△ABC的三条中线长,则有22294ma mb mcbc+ca+ab≥.(1)为证定理1,先引入以下引理:引理1设a,b,c>0,则有(b+c?a)(c+a?b)(a+b?c)≤abc.(2)(1983年瑞士数学竞赛试题)引理2设a,b,c为三角形的三边长,则有(3a?b?c)(3b?c?a)(3c?a?b)≤(b+c?a)(c+a?b)(a+b?c)(3)与a3+b3+c3+9abc≤2(a2b+b2c+c2a)+2(ab2+bc2+ca2).(4)简…  相似文献   

15.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

16.
题 1 已知 a,b,c∈ R ,且 abc≤ 1 ,求证 :a bc b ca c ab ≥ 2 ( a b c) .(《数学通报》1 999年第 1期问题 1 1 71 )该题型新颖独特 ,其证法亦不多见 .贵刊仅在文 [1 ]中给出了一种证法 ,现笔者应用基本不等式简证如下 .证明 原式成立 a b c- c( a b c) c a b c- a( a b c) a a b c- b( a c) b≥ 2 . 1a 1b 1c- 3a b c≥ 2 . ( * )∵ 1a 1b 1c- 3a b c≥ 33abc- 13abc=23abc≥ 2 .(∵ 3a b c≤ 13abc)∴ ( * )成立 ,故原式证毕 .题 2 若 a,b,c∈ R ,abc=1 ,则aba3n 2 b3n 2 ab bcb3n 2 c3n…  相似文献   

17.
一、均值不等式1.如果a,b∈R ,那么a2 b≥ab,当且仅当a=b时取等号.即若ab为定值时,当且仅当a=b时,a b有最小值2ab;若a b为定值时,当且仅当a=b时,ab有最大值a b22.2.如果a,b,c∈R ,那么a 3b c≥3abc,当且仅当a=b=c时取等号.即若abc为定值时,当且仅当a=b=c时,a b c有最小值33abc;  相似文献   

18.
1逆向思维的教材原型题与近年高考题 例1 (新课标选修4-5第25页习题 2.2第2题)已知a,b,c,∈R+,用综合法证: (ab+a+b+1)(ab+ac+bc+c2)≥16abc. 证明 (ab十a+b+1)(ab+ac+bc+c2)=(a+1) (b+1)(a+c) (b+c)≥2√a×2b×2√ac×2√bc=16abc. 例2 (2010年重庆文科第10题)若a,b,c>0,且a2+2ab+2ac+4bc=12,则ab+c的最小值是().  相似文献   

19.
人教A版教材选修4—5《不等式选讲》(或此前的人教大纲版或其他版本的高中教材),基本不等式a^3+b^3+c^3≥3abc(其中a,b,c〉0)是其中不可或缺的重要内容,本文列举几种典型证法,供参考.  相似文献   

20.
左洁 《物理教师》2011,(9):70-71,F0003
不等式是数学学科中一个重要的内容,而基本不等式√ab≤a+b/2(a≥0,b≥0)和3√abc≤a+b+c/3在各种物理竞赛和自主招生考试中发挥着重要作用.下面举几个例子以飨读者.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号