首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The creep-induced deformation of the arch rib of concrete-filled steel tubular (CFST) arches under a sustained load can increase the bending moment, which may lead to earlier stability failure called creep buckling. To investigate the influences of concrete creep on the buckling strength of arches, a theoretical analysis for the creep buckling of CFST circular arches under distributed radial load is performed. The simplified Arutyunyan-Maslov (AM) creep law is used to model the creep behavior of concrete core, and the creep integral operator is introduced. The analytical solutions of the time-dependent buckling strength under the sustained load are achieved and compared with the existing formula based on the age-adjusted effective modulus method (AEMM). Then the solutions are used to determine the influences of the steel ratio and the first loading age on the creep buckling of CFST arches. The results show that the analytical solutions are of good accuracy and applicability. For CFST arches, the steel ratio and the first loading age have significant influences on creep buckling. An approximate log-linear relationship between the decreased degrees of the creep buckling strength and the first loading age is found. For the commonly used parameters, the maximum loss of the buckling strength induced bv concrete creen is close to 40%  相似文献   

2.
建立了T形配钢型钢混凝土偏压构件力学性能分析的有限元模型,计算结果得到以往实验结果的验证。在此基础上,分析了不同阶段材料应力状态和各参数对偏压构件力学性能的影响。结果表明:T形配钢型钢混凝土构件在不同加载角下的性能有所不同,加载角为180°时极限承载力大于其他角度情况;混凝土抗压强度、型钢含钢率、配筋率、荷载偏心率、长细比对构件荷载-变形曲线的影响较大,随着混凝土强度、型钢含钢率、配筋率的增加,极限承载力和刚度增加;随着荷载偏心率的增加,极限承载力和刚度下降;随着构件长细比的增加,构件承载力总体呈现线性下降趋势,刚度下降明显。  相似文献   

3.
Experimental investigation into impact-resistant behavior of reactive powder concrete (RPC)-filled steel tubular columns was conducted,and dynamic response of the columns under axial impact loading was studied by means of numerical simulation method.Increase coefficient of load carrying capacity and ratio of load carrying capacity between steel tube and RPC core of col-umns were obtained.  相似文献   

4.
Fibre-reinforced polymer (FRP) composites were widely utilized in civil engineering structures as the retrofit of reinforced concrete (RC) columns. To design FRP jackets safely and economically, the behaviour of such columns should be predicted first. This paper is concerned with the analysis and behaviour of FRP-confined RC circular and rectangular short columns subjected to eccentric loading. A simple design-oriented stress-strain model for FRP-confined concrete in a section analysis was first proposed. The accuracy was then proved by two test data. Following that, a parametric study including amount of FRP confinement, FRP strain capacity, unconfined concrete strength and shape of column section is provided. Some conclusions were obtained at the end of the paper. The work here will provide a comprehensive understanding of the behaviour of FRP-confined concrete columns. The simplicity of the model also enables a simple equivalent stress block to be developed for direct use in practical design.  相似文献   

5.
Ten slender steel reinforced cencrete (SRC) composite columns are tested under eccentric loading conditions.Effects of concrete strength, slenderness of columns and eccentricity of the axial load are studied. The load-carrying capacity is reduced with increased slenderness ratio and eccentricity. Concrete strength has no obvious influence on eccentrically loaded columns. Then, a nonlinear numerical method of pin-ended slender columns is also presented. This method is applicable for determining the material failure load or buckling failure load of a slender steel reinforced concrete composite column. In this method both material and geometric nonlinearities are taken into account. The results of numerical analysis accord well with the test results. The test results are also compared with the results predicted by ACI318-05 and the China Specifications.  相似文献   

6.
本文在钢骨-钢管混凝土组合柱压弯试验的基础上,讨论了轴压比对组合柱延性影响的原因、试验轴压比与设计轴压比的换算关系以及组合柱轴压比限值问题.根据试验结果和分析可知,对钢骨-钢管混凝土组合柱,设计时可不必限制轴压比,这可以满足组合柱延性的要求.  相似文献   

7.
从损伤的粘弹性材料的卷积型本构关系出发,建立了在小变形下损伤粘弹性梁-柱的控制方程,提出了以卷积形式表示的损伤粘弹性梁-柱弯曲问题的泛函,并给出了损伤粘弹性梁-柱的广义变分原理.应用这个广义变分原理,可分别给出梁-柱位移和损伤满足的基本方程,以及相应的初始条件和边界条件.  相似文献   

8.
Time-to-cracking of the concrete cover induced by the steel corrosion is one of the critical problems faced by engineers, operators and asset managers in making strategies for the maintenance and repairs of reinforced concrete (RC)structures affected by corrosion. In this paper, a theoretical model for predicting the time-to-cracking is derived by assuming the bond between the steel bar and the concrete as a linear combination of perfectly smooth and bonded. The model takes into account the characteristics of existing exiguous flaws and initial cracks in the concrete before the load acting on RC structures. The validity of the proposed model is preliminarily verified by comparing the obtained results with the available experimental results. A remarkable advantage of the proposed method is its application to the prediction of the service life of RC structures, made of the deformed steel bars as well as the round bars. By determining an experimental constant α, which is related to the interface bond state between the steel bar and the concrete, the service life of RC structures can be predicted using the proposed scheme. Analysis of major factors affecting the time-to-cracking demonstrates that the length of the initial crack affects the service life of RC structures significantly. Moreover, the larger cover thickness and the smaller diameter of the steel bar within a certain range are beneficial to prolonging the time-to-cracking.  相似文献   

9.
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.  相似文献   

10.
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA.The multi-material Eulerian and Lagrangian coupling algorithm was adopted.A fluid-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground,multiple ALE element for simulating air and TNT explosive material.Numerical simulations of the blast pressure wave propagation,structural dynamic responses and deformation,and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed.The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure.The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation.The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic deformation subjected to intensive blast waves,and columns lost carrying capacity,subsequently leading to the collapse of the whole structure.The approach coupling influence between structural deformation and fluid load well simulated the progressive collapse process of structures,and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.  相似文献   

11.
The dynamic characteristics and failure modes of steel reinforced concrete (SRC) columns subjected to blast loading are complicated because of the transient stress wave in the SRC columns and the interaction between steel and concrete. This paper presents a numerical simulation of the response of SRC columns subjected to blast loading using hydrocode LS-DYNA. In the numerical model, a sophisticate concrete material model (the Concrete Damage Model) is employed with consideration of the strain rate effect and the damage accumulation. An erosion technique is adopted to model the spalling process of concrete. The possible failure modes of SRC columns are evaluated. It is observed that the failure of SRC columns subjected to blast load can generally be classified into three modes, namely, a direct failure in concrete body due to the stress wave, a transverse shear failure near the support sections due to the high shear force, and a flexural failure pertaining to large local and global deformation of the reinforcing steel.  相似文献   

12.
A numerical investigation of thin-walled complex section steel columns with intermediate stiffeners was performed using finite element analysis. An accurate and reliable finite element model was developed and verified against test results. Verification indicates that the model could predict the ultimate strengths and failure modes of the tested columns with reasonable accuracy. Therefore, the developed model was used for the parametric study. In addition, the effect of geometric imperfection on column ultimate strength and the effect of boundary conditions on the elastic distortional buckling of complex section columns were investigated. An equation for the elastic distortional buckling load of fixed-ended columns having different column lengths was proposed. The elastic distortional buckling load obtained from the proposed equation was used in the direct strength method to calculate the column ultimate strength. Generally, it is shown that the proposed design equation conservatively predicted the ultimate strengths of complex section columns with different column lengths.  相似文献   

13.
为改善锈蚀钢筋混凝土柱的抗震性能, 利用碳纤维布与角钢对锈蚀柱进行复合抗震加固. 试验共对12根试件进行了低周反复加载试验, 研究参量包括钢筋锈蚀程度、轴向荷载、碳纤维布层数和角钢用量. 试验结果表明, 利用碳纤维布和角钢复合加固锈蚀柱可以显著改善锈蚀柱的承载能力、延性和耗能能力. 复合加固后, 加固柱的强度和延性与锈蚀柱相比, 可分别提高0.9倍和1倍以上. 基于试验结果, 提出了计算加固构件屈服荷载、最大荷载和位移延性系数的简化公式, 计算结果与试验结果极为吻合.  相似文献   

14.
Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maxi-mum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short col-umn to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.  相似文献   

15.
In order to improve the seismic performance, deformation ability and ultimate load-carrying capacity of columns with rectangular cross section, engineered cementitious composite(ECC) is introduced to partially substitute concrete in the edge zone of reinforced concrete columns and form reinforced ECC/concrete composite columns.Firstly, based on the assumption of plane remaining plane and the simplified constitutive models, the calculation method of the load-carrying capacity of reinforced ECC/concrete columns is proposed. The stress and strain distributions and crack propagation of the composite columns in different states of eccentric compressive loading are analyzed. Then, nonlinear finite element analysis is conducted to study the mechanical performance of reinforced ECC/concrete composite columns with rectangular cross section. It is found that the simulation results are in good agreement with the theoretical results, indicating that the proposed method for calculating the load-carrying capacity of concrete/ECC composite columns is valid. Finally, based on the proposed method, the effects of ECC thickness, compressive strength of concrete and longitudinal reinforcement ratio on the mechanical performance of reinforced ECC/ concrete composite columns are analyzed. Calculation results indicate that increasing the thickness of ECC layer or longitudinal reinforcement ratio can effectively increase the ultimate load-carrying capacity of the composite column with both small and large eccentricity, but increasing the strength of concrete can only increase the ultimate loadcarrying capacity of the composite column with small eccentricity.  相似文献   

16.
由于配合比的特殊性,自密实混凝土的徐变性能与普通混凝土存在差异。文章对自密实混凝土多参数进行徐变试验,分析胶骨比、水胶比、砂率和粉煤灰掺量4 个参数的敏感性,建立自密实混凝土双曲线徐变模型,应用于自密实混凝土长期变形的预测。  相似文献   

17.
采用有限元法,全过程分析了考虑长期荷载作用下时构件的应变-荷载曲线。基于有限元模型,分析了长期荷载作用下圆端形钢管混凝土柱的工作机理。结果表明:考虑长期荷载作用影响对圆端形钢管混凝土柱的内力分布、变形有较大影响,对承载力影响不大,且随着高宽比的增大,构件的峰值荷载增大,延性减小。  相似文献   

18.
研究了循环荷载作用下铝合金轴压构件的力学性能,并与钢轴压构件进行比较。采用通用有限元分析软件ANSYS对铝合金轴压构件的滞回性能进行有限元分析。分析方法考虑了材料非线性、几何非线性和初始缺陷的影响。根据计算结果,得到了6061-T6铝合金、6061-T4铝合金和Q235钢3种材料轴压构件的滞回曲线、恢复力骨架曲线和刚度退化曲线,并进行了比较研究。分析结果显示,铝合金轴压构件的滞回性能与低碳钢轴压构件较为类似,并受到材料本构关系的显著影响。  相似文献   

19.
自密实钢管混凝土是将混凝土填入薄壁钢管内形成的介于钢结构与混凝土结构之间的一种新型组合结构。实际工程中如何使钢管内混凝土密实,不产生夹层、离析和气囊,是确保钢管与混凝土共同工作的关键。文章通过工程实例详细阐述了泵送顶升自密实钢管混凝土施工工艺、节点设计与连接方式,以及原材料要求与施工过程质量控制措施等,并通过工程实体检测,符合设计与工程质量要求。  相似文献   

20.
采用有限元软件ABAQUS建立了不同加载角T形带肋和多室钢管混凝土压弯构件的计算模型,数值计算结果与试验结果吻合良好。对影响T形钢管混凝土柱水平荷载P-水平位移Δ关系曲线的参数进行分析,结果表明:加载角为0°时,T形钢管混凝土构件的承载力最低,在67.5°负向加载时,构件的承载力最大,比0°加载角构件大13%左右,加载角为45°~90°间承载力总体上差别不大。随着钢管屈服强度、混凝土抗压强度、钢管长厚比、带肋和多室T形钢管混凝土构件在斜向加载的承载力增加,在传统钢管混凝土基础上,提出了适用于不同加载角带肋和多室T形钢管混凝土压弯构件的承载力设计方法,简化计算公式与有限元结果、试验结果均吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号