首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、忽视定义域致错例1求函数y=x-(1-2x)~(1/2)的值域.错解由y=x-(1-2x)~(1/2)得X~2 (1-y)x y~2-1=0.因为关于x的二次方程恒有实根,所以有△=[2(1-y)]-4 (y~2-1)≥0,解得y≤1.故函数的值域为(-∞,1).剖析△=[2(1-y)]~2-4(y~2-1)≥0只能保证方程x~2 2(1-y)x y~2-1=0在整个R上有实根,而不能保证在(-∞,1/2](函数的定义域)上也有实根.  相似文献   

2.
数学命题中的隐含条件常常容易被学生忽略,故而导致解题错误。 例1.已知关于x的方程mx~2-2(3m—1)x gm-1=0有两个实根,求m的范围。 错解 ∵方程有两个实根, ∴△≥0。 即△=[2(3m—1)]~2-4m(9m-1)≥0, 4(-5m 1)≥0, m≤1/5。 分析 根据方程有两个实根隐含条件:此  相似文献   

3.
错在哪里?     
题:a是什么实数时,(x)/(x-2)+(x-2)/(x)+(2x+a)/(x(x-2))=0只有一个实数根,并求出这个实根。解原方程可变为(2x~2-2x+4+a)/(x(x-2))=0要使原方程只有一个实根,只要使方程2x~2-2x+4+a=0的判别式△=4-8(4+a)=0,解得 a=-7/2把a=-7/2代入方程2x~2-2x+4+a=0解得 x=1/2故当a=-7/2时,原方程只有一个实根x=1/2。解答错了!错在哪里这里混淆了只有一个根与重根的概念,其实由△=4-8(4+a)=0得a=-7/2,从而  相似文献   

4.
题设关于x的方程x2-2xsinθ-(2cos2θ+3)=0,其中θ∈[0,π/2],则该方程实根的最大值为_______,最小值为______.(第12届“希望杯”高二第1试) 这道题内容丰富.本文给出各有特色的五种解法. 解法1 二次方程的实根分布原方程可化为 2sin2θ-2xSinθ+x2-5=0. 令t=sinθ,则2t2-2xt+x2-5=0,  相似文献   

5.
一、注意关键的字词例1 m为何实数时,方程mx2-2x+3=0有实根误解∵方程mx-2x+3=0有实根,∴△=(-2)2-4·m·3≥0,解得m≤1/3.∵二次项系数m≠0,  相似文献   

6.
问题:已知不等式1-x2≥x t的解集是,求实数t的取值范围.错解:1-x2≥x t的解集是等价于1-x21-x1-x有解,由1-x2≥0,得-1≤x≤1,设x=cosθQ∈[0,π],则t>sinθ-cosθ=2sin(θ-4π).因为θ∈[0,π],所以(θ-4π)∈[-4π,34π],2sin(θ-4π)∈[-1,2]·所以t>-1为所求·  相似文献   

7.
殷涛 《考试》2007,(Z3)
下面的题目建议你先自己独立完成,然后再仔细看错解及错因分析.例1已知-π/2<α<π/2,-π/2<β<π/2,且tanα,tanβ是方程x~2 6x 7=0的两个根,求α β的值.错解因tanα,tanβ是方程x~2 6x 7=0的两个根,由根与系数关系得tanα tanβ=-6,tanαtanβ=7,  相似文献   

8.
在解与一元二次方程相关的问题时 ,如果考虑问题不全面 ,思维欠缜密 ,就常常出现错误解答 .例 1 已知关于x的方程 (m - 1 )x2 +2mx +m =0有实数根 .求实数m的取值范围 .错解 :∵方程 (m - 1 )x2 + 2mx +m =0有实根 ,∴ m - 1 ≠0 ,( 2m) 2 - 4·(m - 1 )·m≥0 .解得m≥0且m≠1 .故所求的取值范围是m≥0且m≠1 .评析 :解答中忽视了两点 :一是已知条件没有肯定已知方程是二次的 ,而解答是按二次方程考虑的 ;二是方程有实根但题设没有指明有几个实根 ,因而有一个实根也应当是符合题意的 .正解 :分两种情况 :( 1 )当m - …  相似文献   

9.
一元二次方程是初中代数的重要内容,然而很多同学由于受思维定势的影响,往往会忽视含有字母系数的一元二次方程中的隐含条件,致使解答陷入误区.具体表现主要有以下几方面:一、忽视二次项系数a≠0导致字母系数取值范围扩大例1已知关于x的一元二次方程(a2-1)x2+2(a+2)x+1=0有实根,求a的取值范围.错解:因为方程有实根,所以Δ≥0,即4(a+2)2-4(a2-1)≥0,解得a≥-45.剖析:由一元二次方程的定义知:a2-1≠0·而上述解题过程恰恰忽略了这一点,正确解法应为:依题意得:a2-1≠0Δ=4(a+2)2-4(a2-1)≥0解得a≥-54且a≠±1.(注:例1等价于:已知关于x的方程(a…  相似文献   

10.
一元二次方程是初中代数的重难点之一 ,解答与其有关的问题时非常容易出现忽视题中的限制条件而错解或漏解。下面就学习中经常出现的几种错误举例如下 :望能引起同学们重视。一、忽视二次项系数a≠ 0而错解例 1 已知关于x的方程 (m - 2 )x2 +(2m - 1 )x +m =0有两个实数根 ,求m的取值范围。错解 :由题意得 :(2m - 1 ) 2 - 4(m - 2 )m≥ 0解得 :m≥ - 14剖析 :因为方程“有两个实数根” ,故该方程为一元二次方程 ,应强调二次项系数a≠ 0 ,即m - 2≠ 0。其正确答案是m≥ - 14 且m≠ 2。二、忽视根的判别式△≥ 0而错解例 2 已知x1,x2 是关于…  相似文献   

11.
题目 已知方程 2sin2 x-( 2a +3 )sinx+( 4a -2 ) =0 ( )有实根 ,求实数a的取值范围 .错解 1 ∵方程 ( )有实根 ,∴Δ=( 2a +3 ) 2 -8( 4a -2 )=( 2a-5) 2 ≥ 0 ,∴a为一切实数 .错解 2 令sinx =t,则 -1 ≤t≤ 1 ,方程 ( )可化为2t2 -( 2a+3 )t+( 4a -2 ) =0 .设该方程的两根分别为t1 和t2 ,于是有Δ =( 2a+3 ) 2 -8( 4a-2 )≥ 0 ,-2 ≤t1 +t2 =2a+32 ≤ 2 ,-1 ≤t1 t2 =4a-22 ≤ 1 ,即a∈R ,-72 ≤a≤ 12 ,0 ≤a≤ 1 ,解得 0 ≤a≤ 12 .错解 3 令sinx =t,则 -1≤t≤ 1 ,方程 ( )可…  相似文献   

12.
方程ax~2 bx c=0的判别式△=b~2-4ac及运用判别式求解一类范围题早被人们熟知。在三角方程asinx bcosx=c中,高中代数第二册P.31给出了它的有解条件|c/(a~2 b~2)~(1/2)|≤1。我们容易从有解条件中得到a~2 b~2-c~2≥0,仿一元二次方程,我们引出符号△=a~2 b~2-c~2,并把它称为三角方程asinx bcosx=c的判别式。容易证明:方程asinx bcosx=c,x∈[0,2π),当 i)△>0时,有两不等实根;ii)△=0时,有唯一实根;iii)△<0时,无实根。 u=cosx, 略证如下{ x∈[0,2π) v=sinx,  相似文献   

13.
构造法是数学中常用的也是重要的方法之一.本文将通过构造辅助方程求某些三角函数式的值,而这些三角函数的值都是不易直接求解的。例1 求sin18°的值. 解:设α=18°,那么3α=90°-2α,从而sin3α=cos2α,即 3sinα-4sin~3α=1-2sin~2α, 4sin~3α-2sin~2α-3sinα 1=O.这说明sin18°是方程4x~3-2x~2-3x 1=0的一个根. ∵ 4x~3-2x~2-3x 1=(x-1)(4x~2 2x -1). ∴原方程的根为1,(-1±5~(1/5))/4,于是sin18°=(-1 5~(1/5))/4. 例2 求 cosπ/7-cos2π/7 co3π/7的值。解:设α=π/7,并设原式为y,那么y=cosα cos3α cos5α,从而  相似文献   

14.
△=b~2-4ac是一元二次方程ax~3 bx c=0的根的判别式,利用它可以不解方程,直接判别方程根的情况。实际上,在解题中,△=b~2-4ac的用途是相当广泛的。 1.△=b~2-4ac在“四个二次”问题中的应用 例1 已知方程(1)x~2-2kx k~2 k=O,(2)x~2-(4k 1)x 4k~2 k=0,(3)4x~2-(12k 4)x 9k~2 8k 12=0中至少有一个方程有实根,求k的取值范围。 分析 结论中“至少有一个方程有实根”的含义为:可能有一个方程有实根;可能有两个方程有实根;可能有三个方程有实根。 从分析看出,此题要用△≥0来解决。但情况复杂,解题繁琐,难以直接证明。因此,  相似文献   

15.
本文拟举出几个错解的例子,剖析产生错误的原因,从中得出正确使用根的判别式Δ的方法。例1 已知关于x的方程x~2+(2i+1)x-m+i=0有实根,求实数m。错解:因原方程有实根,则Δ=[-(2i+1)]~2-4(i-m)≥0,即4i~2+4i+1-4i+4m≥  相似文献   

16.
题 求函数y=sinx/2 2/sinx(x∈(0,π))的最小值。 此道题,按常规思路容易出现下面两种错误解法。 错解1 ∵x∈(0,π),∴sinx>0, ∴∴ y_(min)=2。 显然,其致错原因忽视了基本不等式中等号成立的条件sinx/2=2/sinx,即sin~2x=4,这是不可能成立的。  相似文献   

17.
在实数范围内,一元二次方程ax2 bx c=0 (a≠0)有两个实根x1、x2,则x1 x2=-b/a,x1x2=c/a. 注意在实数范围内应用根与系数关系的前提条件是a≠0且△≥0.它的应用主要体现在不解方程或无法解方程的情况下,直接沟通方程系数与根之间的关系.现举例如下: 一、由根的性质求方程中未知数的值例1 已知关于x的方程2x2-mx-2m 1=0的两实根的平方和等于29/4,求m的值. 解:设方程的两实根为x1、x2则得x1 x2=m/2,  相似文献   

18.
引入变量,将一些原本不是求解方程的问题转化为解方程,从而使原问题获解的方法,称为“方程法”。可应用在一些三角等式的证明中。 [例1] 已知cos~4α/cos~2β+sin~4α/sin~2β=1,求证:cos~8α/cos~6β+sin~8α/sin~6β=1。证:令cos~2α=x,sin~2α=y,则有,用代入消元方法可得到,x~2-2xcos~2β+cos~4β=0,即(x-cos~2β)~2=0, ∴x=cos~2β,y=sin~2β,即cos~2α=cos~2β,sin~2α=sin~2β。  相似文献   

19.
例1已知tanα,tanβ是方程x2+3√3x+4=0的两根,且α,β(-π2,2π),则α+β的值为A.π3B.-23π或3πC.-π3或23πD.-23π错解∵tanα+tanβ=-3√3,tanαtanβ=4,∴tan(α+β)=tanα+tanβ1-tanαtanβ=-13√-43=√3.又α,β(-π2,2π),∴α+β(-π,π).因此,α+β=-2π3或π3.选B.辨析错在忽视了tanα,tanβ是方程x2+3√3x+4=0的两个负根这一隐含条件.正解∵tanα+tanβ=-3√3<0,tanαtanβ=4>0,∴tanα,tanβ为方程x2+3√3x+4=0的两个负根,即tanα<0,tanβ<0.又α,β(-π2,2π),∴α,β(-π2,0),α+β(-π,0).又tan(α+β)=tanα+tanβ1-t…  相似文献   

20.
在解与实数相关的问题时,常常用到一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac,这里谈谈判别式的具体应用中的一些错解。一、待定系数的求值问题例1.已知关于x的方程x2-mx-n=0的两根的积比两根之和的2倍小12,并且两根的平方和为22,求m,n的值。错解:设两根分别为x1、x2则x1+x2=m,x1x2=-n依题意,得2(x1+x2)-x1x2=12x21+x22=2 2即2m+n=12m2+2n=2 2解得m1=7n1=-272 或m2=-3n2=132 分析:∵方程有两根,∴△≥0即m2+4n≥0,但m1=7,n1=-272时,△<0。不合题意,应舍去。当m2=-3,n2=132时△>0∴m=-3,n=132例2.已知一元二次方…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号