首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

2.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

3.
1逆向思维的教材原型题与近年高考题 例1 (新课标选修4-5第25页习题 2.2第2题)已知a,b,c,∈R+,用综合法证: (ab+a+b+1)(ab+ac+bc+c2)≥16abc. 证明 (ab十a+b+1)(ab+ac+bc+c2)=(a+1) (b+1)(a+c) (b+c)≥2√a×2b×2√ac×2√bc=16abc. 例2 (2010年重庆文科第10题)若a,b,c>0,且a2+2ab+2ac+4bc=12,则ab+c的最小值是().  相似文献   

4.
《中学数学教学》2 0 0 2年第 6期有奖解题擂台( 5 8)中 ,杨先义老师提出如下猜想 :设a >0 ,b >0 ,c>0 ,a +b +c=1 ,则1b+c2 +1c +a2 +1a +b2 ≥2 74①ab +c2 +bc +a2 +ca +b2 ≥ 94②本文指出 ,猜想不等式①不成立 ,不等式②成立。在①式中 ,令a =0 6,b=0 3 6,c =0 0 4,得左边 =3 41 9455 1 5 2 8<2 74=右边 ;故不等式①不成立。下面证明不等式②成立 ,并修正①式。运用Cauchy不等式 ,得[a(b +c2 ) +b(c +a2 ) +c(a +b2 ) ]( ab+c2 +bc+a2 +ca +b2 )≥ (a +b +c) 2 =1 ,所以  ab +c2 +bc+a2 +ca +b2 ≥1ab +bc +ca +a2 b +b2 c+c2 a。…  相似文献   

5.
a b c=0(a、b、c∈R)有许多简洁、优美的结论,且有着广泛的用途.本文作一探讨,供大家参考.结论1若a b c=0,则b~2≥4ac或a~2≥4bc或c~2≥4ab.  相似文献   

6.
几道数学竞赛题的简解   总被引:1,自引:0,他引:1  
题1设a、b、c为正实数,且a2 b2 c2 abc=4.证明:3abc≤ab bc ac≤abc 2.(第30届美国数学奥林匹克)证明:由4=a2 b2 c2 abc≥abc 3(abc)32,即abc≤1可知ab ac bc≥3(abc)32≥3abc.由题设知,a、b、c中一定有且只有两个数或者都不大于1,或者都不小于1.不妨设这两个数为a、b.则c(a-1)  相似文献   

7.
<正>命题在△ABC中,a、b、c分别为其三边长,R、r分别为其外接圆和内切圆半径,则有a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc≥4-2r()Rabc≥3abc.证明先证明a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc.由于a、b、c是三角形的三边长,所以有a+b>c,即a+b-c>0,同理有b+c-a>0,c+a-b  相似文献   

8.
人教版"不等式"里有一道习题:证明不等式"a2+b2+c2≥ab+bc+ca".证明过程如下:因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,所以2a2+2b2+2c2≥2ab+2bc+2ca,即a2+b2+c2≥ab+bc+ca."a2+b2+c2≥ab+bc+ca"是一个很重要的不等式,有着广泛的应用.  相似文献   

9.
分析法是一种执果索因的思考方法 ,就是先假设结论成立 .然后寻求它赖以成立的条件 ,再把这些条件作为新结论 ,分别考察它们的成立又各需具备什么条件 ,如此继续 ,一直上溯到已知条件为止 .对于条件和结论之间 ,逻辑关系较复杂的命题 ,直接从已知条件入手不易成功 ,有时甚至无从着手 ,此时 ,用分析法就有可能打开解题的思路 .举例说明如下 :例 1 已知 1a + 1b + 1c =0 ,求证 :( a + b+ c) 2= a2 + b2 + c2 .分析 :欲证 ( a + b + c) 2 =a2 + b2 + c2 ,只要证 a2 + b2 + c2 + 2 ab + 2 bc + 2 ac =a2 + b2+ c2 ,即证 ab + bc+ ac=0 ,亦即证 …  相似文献   

10.
提起“b2-4ac”,同学们立即会想到它与一元二次方程ax2+bx+c=0(a≠0)有着密切关系.但笔者通过对近几年国内外数学竞赛题的研究发现它在一元二次方程以外也有应用.首先提出:命题当a+b+c=0时,则有b2-4ac≥0,即b2≥4ac.证明由a+b+c=0得b=-(a+c),所以b2-4ac=[-(a+c)]2-4ac  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号