首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由抛物线的定义可以推出,过抛物线y2=2px(p>0)焦点(P/2,0)弦AB的弦长与弦AB中点的横坐标有着密切的关系:|AB|=x1 x2 p=2x p,其中A点的坐标为(x1,y1),B点的坐标为(x2,y2),x=x1 x2/2.……  相似文献   

2.
设直线l经过抛物线C:y2=2px(p>0)的焦点F,且与抛物线C交于A、B两点(直线AB的倾斜角为α),设A (x1,y1),B(x2,y2),O为坐标原点,准线方程为:x=-p/2,则关于抛物线C的焦点弦有以下九条常用的性质:(1)2x1x2=p/4;(2)y1y2=-p2.  相似文献   

3.
本文探讨抛物线对顶点张直角的弦的几个性质及应用.设点A,B在抛物线y2=2px或x2=2py(p>0)上,且OA⊥OB(O为坐标原点).1、对抛物线y2=2px,弦AB过定点(2p,0),反之也成立;对抛物线y2=2px弦AB过定点(0,2p),反之也成立.2、若直线OA的斜率为k(k≠0),则:(1)对抛物线y2=2px,弦AB的中点为(p(k2 1/k2),p(?k 1/k));对抛物线x2=2py,弦AB的中点为(p(k?1/k),p(k2 1/k2)).(2)弦AB的长l=2p(k2 k12 12)2?94;(3)△AOB面积2S2p2k1k= .下面只对y2=2px的情形加以证明,对x2=2py的情形类似可证.证明由???yy2==k2x,px,得A(2k p2,2kp).由OA⊥OB可得B(2pk2,?…  相似文献   

4.
定理过点(k,0)作直线AB和抛物线y2=2px(p>0)交于A(x1,y1)、B(x2,y2)两点,则有x1x2=k2,y1y2=-2pk.证明设直线AB的方程为x=my+k,代入y2=2px,有y2-2pmy-2pk=0.因为直线AB与抛物线相交于A(x1,y1)、B(x2,y2)两点,于是y1y2=-2pk.由y21y22=4p2x1x2,得到x1x2=y21y224p2=4p2k24p2=k2.推论(焦点弦定理)若AB是过抛物线y2=2px(p>0)的焦点的弦,且A(x1,y1),B(x2,y2),则有y1y2=-p2,x1x2=p24.在解决某些与抛物线相关问题的时候,应用该定理和推论的内容,能简洁、快速地解题,同时也能达到优化解题过程的目的.例1如图1所示,线段AB过x轴正半轴上一点M(m,0…  相似文献   

5.
1.对抛物线y2=2px(p>0),AB为过其焦点的弦,A(x1,Y1),B(x2,y2),则有:|AB|=x1+x3+p. 证明:抛物线的焦点为F(p/2,0),准线方程是l:x=-p/2.过A、B分别作AA'、BB'垂直于l,垂足为A'、B'.由定义可知  相似文献   

6.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

7.
从抛物线y~2=2px外一点p(x_0,y_0)、向抛物线引两条切线,切点为A,B,则线段AB称为p点的切点弦、切点弦AB的方程是yy_0=p(x+x_0),证明如下: 设切点A、B坐标分别为A(x_1,y_1),B(x_2,y_2),则PA、PB方程分别为:  相似文献   

8.
抛物线的焦点弦有着很多值得思考的性质,这里略举一二.图1(一)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则弦长|AB|=x1 x2 p.这由抛物线的定义很容易得到.(二)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则y1·y2=-p2.证明:抛物线y2=2px与直线AB:x=ky 2p,联立得y2-2kpy-p2=0,所以由韦达定理得y1·y2=-p2.(三)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,令|AF|=r1,|BF|=r2,则r11 r12=2p.设抛物线的焦点F2p,0,当直线的斜率不存在…  相似文献   

9.
1命题命题1若A B是椭圆22C1:ax2+by2=1的一条弦,且弦AB的中点为M(xM,y M),则椭圆22222C:(2x M x)(2y My)a b?+?=1经过A、B两点.证明设点A(x A,y A)、B(x B,y B),则由M是弦AB的中点,可知,x B=2x M?xA,y B=2y M?yA,由点B在椭圆C1上,知(2x M?x A)2/a2+(2y M?y A)2/b2=1,所以点A在椭圆C2上.同理可知点B也在椭圆C2上,故椭圆C2经过A,B两点.类似地有:命题2若AB是双曲线22C1:ax2?by2=1的一条弦,且弦AB的中点为M(xM,y M),则双曲线22222C:(2x M x)(2y My)1a b???=经过A,B两点.命题3若AB是抛物线y2=2px的一条弦,且弦AB的中点为…  相似文献   

10.
解析几何中有这样一个结论,即命题1在抛物线y2=2px(p>0)中,过顶点O作互相垂直的两直线交抛物线于A,B两点,连A,B交x轴于E点,则E为定点.图1证设A(x1,y1),B(x2,y2),直线AB:x=ky+m,代入y2=2px,得y2-2pky-2pm=0.故y1y2=-2pm.又OA⊥OB,得x1x2+y1y2=0,(1)21y22故y4p2+y1y2=0,m2-2pm=0,m=2p,或m=0(舍).即E点坐标为(2p,0)是定点.利用这个命题,求点O在直线AB上的射影的轨迹,显得特别方便,因OE为定长,就能看出所求轨迹是一个以OE为直径的圆(去掉点O).y1y2=b2m2-a2b2a2+b2k2,又DA=(x1+a,y1),DB=(x2+a,y2),因DA⊥DB,故DA·DB=0,即(x1+a)(x…  相似文献   

11.
抛物线的焦点弦是抛物线定义与性质的交汇点.本文就与其相关的切线探索出若干性质.题目抛物线y2=2px(p>0)上不同两点A、B处的切线交于点Q.求证:若AB过抛物线的焦点F,则(1)AQ⊥BQ;(2)点Q在抛物线的准线上;(3)QF⊥AB.证明设A(x1,y1),B(x2,y2),Q(x0,y0).对于y2=2px求导,有2yy’=2p,得  相似文献   

12.
<正>【深度改编题】【原题】如图,已知直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1),求p的值.【解题思路】因为OD⊥AB,D (2,1),所以kOD=1/2,则kAB=-2.直线AB的方程为y-1=-2(x-2),即y=-2x+5.设直线AB交抛物线y2=2px于点A (x1,y1),B (x2,y2),  相似文献   

13.
我们知道,若M(x,y)是线段AB的中点,且A为(x+u,y+ku),k为AB的斜率,则B的坐标为(x-u,y-hu),利用这种表达方法解一些有关中点的几何问题显得方便,兹举例如下: 例一:过点P(1,2)作椭圆x~2/(16)+y~2/9=1的弦AB,  相似文献   

14.
2004 年福建省高考理工 22 题,文史 21 题均涉及到如下命题: P 是抛物线C : y = x2 /2上一点,直线l 过点 P 且与抛物线C 交于另一点Q ,若直线l 与过点 P 的切线垂直,求线段PQ 中点 M 的轨迹方程. 上述命题中,线段 PQ为过切点且与切线垂直的弦,点 M 为线段 PQ 的中点.这是一道求受限动弦中点轨迹的问题,本文探究此类轨迹方程的一般形式,并予以推广. 定理 1 抛物线 x2 = 2py的弦 PQ垂直于过点 P 的切线,则 PQ中点M 的轨迹方程为 y = x2 / p p3 /(2x2) p . 证明 设 P(x1, y1),Q(x2, y2) ,M(x, y) ,由 y = x2 得 y'=…  相似文献   

15.
题目:已知动圆过定点(p2,0)且与直线x=-p2相切,其中p>0.(Ⅰ)求动圆圆心的轨迹C的方程;(Ⅱ)设A、B是轨迹C上异于原点O的两个不同点,直线OA和OB的倾斜角分别为α和β,当α、β变化且α+β为定值θ(0<θ<π)时,证明直线AB恒过定点,并求出该点的坐标.(Ⅱ)解法1设点A(x1,y1),B(x2,y2),则x1=y212p,x2=y222p.由题意知x1≠x2(否则α+β=π),x1,x2≠0,y1≠y2,y1,y2≠0,tanα=2py1,tanβ=2py2.因为AB=(x2-x1,y2-y1)=(y22-y212p,y2-y1),设点p(x,y)为AB上任一点,则AP=(x-y212p,y-y1),AP∥AB.于是y22-y212p(y-y1)=(y2-y1)(x-y212p),即y1+y22py=…  相似文献   

16.
二次函数 y=ax~2 bx十c(a≠0),当判别式△=b~2-4ac>0时,设抛物线与x轴的两支点为A(x_1,0),B(x_2,0),则 AB=│x_2-x_1│ △~(1/2)│a│. 若△ABC为内接于抛物线中的三角形,设C点坐标为(x,y),易得 S_(△ABC)=1/2AB·│y│=│y│△~(1/2)/2│a│(1) 特别地:  相似文献   

17.
题如图1,过抛物线y2=2px(p>0)焦点F的一条直线和抛物线相交,交点的纵坐标为y1、y2.求证y1y2=-p2.证法1由已知,抛物线焦点F(2p,0),设过点F的直线与抛物线交于点A(x1,y1),B(x2,y2).若AB⊥x轴,则y1=p,y2=-p.所以y1y2=-p2.若AB与x轴不垂直,设直线AB的方程为y=k(x-2p),与y2=2px联立,得y2-2kpy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.证法2因直线AB过定点F且与x轴不平行,所以设直线AB的方程为x=my 2p.代入y2=2px得y2-2pmy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.法1是常规解法,法2设出直线方程,避免了讨论直线斜率的存在性,是一种很…  相似文献   

18.
熟练地运用设而不求法求解析几何问题,能避免繁杂运算、简化解题过程,使解题收到事半功倍的效果.现归纳解析几何中运用设而不求法解题的几种方法如下:1利用元素的整体结构解题过程中,不直接求出所设元素,而抓住元素的整体结构,能有效地减少运算量,使解题化繁为简.1.1利用点的坐标的整体结构例1已知抛物线y2=4x,过点P(1,3)作直线l交物线于A,B两点,使P恰为弦AB的中点,求直线l的方程.解设A(x1,y1),B(x2,y2).因为点A,B在抛物线y2=4x上,所以y12=4x1,y22=4x2.两式相减可得yx22--xy11=y24 y1.又P是弦AB的中点,y1 y2=6,所以kAB=y2-y1x2-x1=32,…  相似文献   

19.
本文介绍直线方程的一种/另类0求法及解题中的广泛应用.如果P(x1,y1),Q(x2,y2)两点坐标满足:Ax1+By 1+C=0,A x 2+By 2+C=0,说明P(x1,y1),Q(x2,y2)两点都在直线A x+By+C=0上,因为两点确定一条直线,所以直线PQ的方程为:Ax+By+C=0,这给出了求直线方程的一种新方法,应用这种方法,能使许多棘手的解析几何问题得到简捷地解决,下面举例说明.例1过点M(4,2)作x轴的平行线被抛物线C:x2=2py(p>0)截得的弦长为4 2.  相似文献   

20.
错在哪里     
1安徽省安庆市第一中学洪汪宝(邮编:246004)题目已知抛物线y=x2上的A、B两点满足OA^→·OB^→=2,点A、B在抛物线对称轴的左右两侧,且点A的横坐标小于零,抛物线顶点为O,焦点为F.(1)当点B的横坐标为2,求点A的坐标;(2)设焦点F关于直线OB的对称点是C,求当四边形OABC的面积取最小值时点B的坐标.解(1)点A的坐标为-1,1(过程略);(2)由条件知直线AB的斜率存在,设AB:y=kx+m,Ax1,y1,Bx2,y2,由题意知x1<0,x2>0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号