首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2.
In contrast to the situation with early artificial turf pitches, little information has previously been published on the characterisation of third-generation artificial surfaces. The spatial variation of ball rebound resilience and rotational resistance were measured here under dry conditions, late in the season, for two natural turf football pitches and a recently laid third-generation artificial turf pitch. Data for the natural turf pitches show a wider variation with position on the pitch than for the artificial pitch. The latter surface showed remarkable consistency in both quantities measured. Surprisingly, all ball rebound resilience data and some of the rotational resistance values were found to lie outside current FIFA specifications, possibly due to the level of wear in natural turf at this stage of the season. For the artificial turf, the deterioration in properties over a period of 6 months is significant and suggests more frequent testing is needed. Taking data from various pitch positions, the two measured quantities were shown for the first time, as far as we are aware, to be inversely related for both natural turf pitches. This correlation may be largely attributed to differences in the extent of grass cover and/or soil compaction. For artificial turf, the lack of variation in measured quantities with pitch position precluded the determination of any correlation.  相似文献   

3.
The quasi-static testing of soils used in natural turf pitches yields key parameters in soil modelling, including elastic moduli, Poisson’s ratio and Mohr–Coulomb parameters for shearing resistance and cohesion in soil. The bulk strength of a Sand soil used in the construction of elite sports surfaces was found to increase initially and then decrease with increasing water content due to apparent cohesion effects. For a Clay Loam soil, more common in recreational facilities, shear strength decreased with water content. Reducing density resulted in a reduction of shear strength and elastic moduli in both soils due to reduced packing of particles reducing particle–particle contact surface area. The effect of roots on the shear strength of a Sand soil was not significant but reduced elastic moduli significantly. Horizontal forces measured during running and turning in a biomechanics laboratory were in good agreement with forces predicted using a simple quasi-static soil model for coarse-grained (Sand) soils although this was not the case with the Clay Loam soil.  相似文献   

4.
The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several “third generation” (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97–1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an “abrasive” polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.  相似文献   

5.
The surface on to which a bowler projects a ball in the game of cricket is made up of hard packed soil with sparse grass cover. This natural turf pitch is of fundamental importance to the play of the game and the quality of the surface is a prime concern of players, officials, commentators and spectators alike. A programme of research has been undertaken to identify the factors that lead to the construction of high quality cricket pitches. This work employed the technology of highspeed video analysis to monitor the performance of first class cricket pitches during county matches. A system for measuring the impact of a cricket ball on a pitch was developed, and over 3000 ball impacts analysed. This analysis enabled pitches to be characterized in terms of pace, bounce and consistency. Soil properties for the monitored pitches were identified and correlations were drawn between pitch performance and soil composition.  相似文献   

6.
Natural turf pitches are used for many outdoor sports. Turf is a complex network of interacting organic material, soil textures and water content. Turf is susceptible to damage under large surface forces, caused by intensive player movements in rugby union and football. To assess and monitor surface stability, there needs to be a reliable test method for ground staff and other stakeholders. At present, no turf stability mechanical test method exists that represents player–surface interaction, especially to represent a linear movement across the surface such as in a rugby scrummage. This paper describes the development of a novel device for assessing turf stability. Verification was undertaken in the laboratory on a variety of controlled soil samples, and during a field study. The device measurements were shown to be sensitive to the shear strength of a high clay content soil at varying water content and to the density and type of sandy soils. A programme of field data on high quality pitches suggested a large effect of the turf root reinforcement. A conceptual model of soil failure induced by the device was developed to identify the key soil variables and support experimental data interpretation.  相似文献   

7.
Dynamic behaviour of soils used for natural turf sports surfaces   总被引:1,自引:0,他引:1  
The modulus and damping properties of soils in compression are a function of soil type, water content, stress history and loading rate. To model human–surface interaction with natural turf sports surfaces, stiffness and damping properties must be determined at dynamic loading rates. Two contrasting soil types, a Sand and a Clay Loam, commonly used in sports surfaces were loaded uniaxially to 2 kN at loading rates between 0.6 and 6 kN s−1 in modified dynamic soil testing apparatus. Soils were compacted prior to loading but initial cycles resulted in viscoplastic deformation, with strain accumulation with repeated cycles of loading. Ultimately a resilient, viscoelastic steady-state equilibrium with loading was established. Resilient modulus and damping ratio varied with soil type, water content, stress history and increased significantly with loading rate. The resilient modulus of the Sand soil, typical of modern free-draining sand construction natural turf sports surfaces, was significantly greater than that of a Clay Loam soil more characteristic of traditional natural turf surfaces; reducing water content caused an increase in modulus and a decrease in damping ratio in the Clay Loam soil. Determination of these properties provides initial data for the modelling natural turf surface behaviour in terms of both ball and human interactions, with further research required to determine the effect of both grass roots and leaves on mechanical behaviour.  相似文献   

8.
The aim of this study was to examine the impact of contextual factors on relative locomotor and metabolic power distances during professional female soccer matches. Twenty-eight players (forwards, n?=?4; midfielders, n?=?12; defenders, n?=?12) that competed in a 90-min home and away match (regular season only). The generalised estimating equations (GEE) was used to evaluate relative locomotor and metabolic power distances for three contextual factors: location (home vs. away), type of turf (natural vs. artificial), and match outcome (win, loss and draw). No differences were observed for home vs. away matches. Moderate-intensity running (20.0?±?1.0?m?min?1 and 16.4?±?0.9?m?min?1), high-intensity running (8.6?±?0.4?m?min?1 and 7.3?±?0.4?m?min?1) and high-metabolic power (16.3?±?0.5?m?min?1 and 14.4?±?0.5?m?min?1) distances were elevated on artificial turf compared to natural grass, respectively. Relative sprint distance was greater during losses compared with draws (4.3?±?0.4?m?min?1 and 3.4?±?0.3?m?min?1). Overall physical demands of professional women’s soccer were not impacted by match location. However, the elevation of moderate and high-intensity demands while playing on artificial turf may have implications on match preparations as well as recovery strategies.  相似文献   

9.
Understanding the surface hardness of soccer fields is essential to evaluate the risk of injury and also its influence on the playing behavior of soccer players. In this context, newly developed hybrid turf systems have to be tested for their surface hardness with regard to the increased risk of injury on hard sports surfaces. The hardness of a soccer field can be quantitatively measured using an apparatus with a cylindrical weight that is dropped from a defined height. Since this procedure was first used for road construction, there are few studies investigating its use on sports grounds. This has led to inconsistencies in methodology and the absence of evaluation guidelines for classifying the hardness of soccer fields. This paper considers how turf systems (natural turf and hybrid turf) differ in their hardness and how this method can be used for different soccer turf systems. Natural turf systems, stitched turf systems, hybrid turf-bearing layer systems and woven mat systems were investigated. The assessment results from a comparative representation of hardness values of different soccer fields. By comparison, natural turf systems were found to be the softest, while woven mat systems were the hardest. Furthermore, the parameters that might affect the hardness were investigated. The influence of the measured soil parameters decreases with an increasing number of measurements per measuring point. Turf system-specific correlations make it possible to reduce the amount of measurement effort.  相似文献   

10.
The risk of soccer players sustaining mild traumatic brain injury (MTBI) following head impact with a playing surface is unclear. This study investigates MTBI by performing headform impact tests from varying heights onto a range of third-generation artificial turf surfaces. Each turf was prepared as per manufacturers specifications within a laboratory, before being tested immediately following installation and then again after a bedding-in period. Each turf was tested dry and when wetted to saturation. Data from the laboratory tests were compared to an in situ third-generation surface and a professional grass surface. The surface performance threshold was set at a head impact criterion (HIC) = 400, which equates to a 10% risk of the head impact causing MTBI. All six third-generation surfaces had a >10% risk of MTBI from a fall >0.77 m; the inferior surfaces required a fall from just 0.46 m to have a 10% MTBI risk. Wetting the artificial turf did not produce a statistically significant improvement (P > 0.01). The in situ third-generation playing surface produced HIC values within the range of bedded-in experimental values. However, the natural turf pitch was the superior performer – necessitating fall heights exceeding those achievable during games to achieve HIC = 400.  相似文献   

11.
Test procedures and their accuracy in determining critical fall height (CFH) on sporting grounds are paramount to player safety. The procedure currently adopted for synthetic turf in Australian football [1] consists of four consecutive drops at various drop heights at three test locations on the sample. The quantity and packing of the infill in third-generation turf and the pooling effect of the rubber particles with consecutive drops suggests that the current standard protocol may need re-assessment. Therefore, the purpose of this pilot study was to investigate whether current methods of testing for CFH are appropriate for third-generation synthetic turf or whether an alternative or adapted method needs to be developed. CFH was measured, using a HISUN Uniaxe-II Impact Tester, on 12 combinations of synthetic turf samples (four different products with three shock pad options). Three conditions were investigated on each sample; the existing protocol; an alternative 12 single-drop protocol and four single drops from the CFH determined from the existing protocol. A significant difference was found for both absolute and percentage difference between the existing and 12 single-drop protocol, with p = 0.001 and t = 4.33 and p < 0.001 and t = 6.03, respectively. There was also a significant difference between the CFH reached with and without a shock pad for both the existing protocol and the 12 single-drop protocol. The results of this pilot study demonstrate that differences do occur with alterations to the existing protocol and highlight the need for a more detailed characterisation of testing methods on third-generation synthetic turf and the response of surfaces to them.  相似文献   

12.
Artificial surfaces are now an established alternative to grass (natural) surfaces in rugby union. Little is known, however, about their potential to reduce injury. This study characterises the spinal kinematics of rugby union hookers during scrummaging on third-generation synthetic (3G) and natural pitches. The spine was sectioned into five segments, with inertial sensors providing three-dimensional kinematic data sampled at 40 Hz/sensor. Twenty-two adult, male community club and university-level hookers were recruited. An equal number were analysed whilst scrummaging on natural or synthetic turf. Players scrummaging on synthetic turf demonstrated less angular velocity in the lower thoracic spine for right and left lateral bending and right rotation. The general reduction in the range of motion and velocities, extrapolated over a prolonged playing career, may mean that the synthetic turf could result in fewer degenerative injuries. It should be noted, however, that this conclusion considers only the scrummaging scenario.  相似文献   

13.
A cricket pitch is a prepared strip of compacted soil and closely mown turf onto which the bowler projects the ball. The surface is of fundamental importance to the game and groundstaff seek to ensure that the ball rebound is of sufficient pace, bounce and consistency to promote skill in both the batsman and bowler. The scientific understanding of the factors that influence the playing quality of a pitch is incomplete and groundstaff often rely on experience and ‘rules of thumb’. A major programme of research was undertaken to determine the effectiveness of a range of pitch measurement apparatus that are perceived to provide indications of playing character. Over three seasons, 18 fieldwork visits were completed at 11 different first-class county grounds. Pitches were tested at the end of each match and direct assessments of pace, bounce and consistency were achieved by employing an artificial bowler and high speed video arrangement. Measurements of surface friction, hardness and restitution were also recorded. It was found that no single pitch measurement was able to provide a reliable indication of pace or bounce, but, when the measurements were combined in a simple Newtonian model, good predictions of pace were achieved. The study revealed a simple method by which groundstaff can predict pace during crucial stages in pitch preparation. However, the study also showed that bounce is affected by levels of pitch deformation and that development of impact models and bespoke measurement tools is needed to reliably predict variation in bounce.  相似文献   

14.
Abstract

Sand surfaces can offer a higher energy cost (EC) and lower impact training stimulus compared with firmer and more traditional team sport training venues such as grass. This review aims to summarise the existing research on sand training, with a specific focus on its application as a team sports training venue. Compared with grass, significant physiological and biomechanical differences are associated with sand exercise. However, evidence also exists to suggest that training adaptations unique to sand can positively influence firm-ground performance. Furthermore, the lower impact forces experienced on sand can limit muscle damage, muscle soreness, and decrements in performance capacity relative to exercise intensity. Therefore, using a sand training surface in team sports may allow greater training adaptations to be achieved, while reducing performance decrements and injuries that may arise from heavy training. Nevertheless, further research should investigate the effect of sand surfaces over a greater range of training types and performance outcomes, to increase the application of sand training for team sports.  相似文献   

15.
This study compared markers of muscle damage and inflammation elevated by a matched-intensity interval running session on soft sand and grass surfaces. In a counterbalanced, repeated-measures and crossover design, 10 well-trained female athletes completed 2 interval-based running sessions 1 week apart on either a grass or a sand surface. Exercise heart rate (HR) was fixed at 83–88% of HR maximum. Venous blood samples were collected pre-, post- and 24?h post-exercise, and analysed for myoglobin (Mb) and C-reactive protein (CRP). Perceptual ratings of exertion (RPE) and muscle soreness (DOMS) were recorded immediately post- and 24?h post-exercise. A significant time effect showed that Mb increased from pre- to post-exercise on grass (p?=?.008) but not on sand (p?=?.611). Furthermore, there was a greater relative increase in Mb on grass compared with that on sand (p?=?.026). No differences in CRP were reported between surfaces (p?>?.05). The HR, RPE and DOMS scores were not significantly different between conditions (p > .05). These results suggest that in response to a matched-intensity exercise bout, markers of post-exercise muscle damage may be reduced by running on softer ground surfaces. Such training strategy may be used to minimize musculoskeletal strain while still incurring an equivalent cardiovascular training stimulus.  相似文献   

16.
Abstract

In spite of the increased acceptance of artificial turf in football, few studies have investigated if matches are altered by the type of surface used and no research has compared physiological responses to football activity on artificial and natural surfaces. In the present study, participants performed a football match simulation on high-quality artificial and natural surfaces. Neither mean heart rate (171 ± 9 beats · min?1 vs. 171 ± 9 beats · min?1; P > 0.05) nor blood lactate (4.8 ± 1.6 mM vs. 5.3 ± 1.8 mM; P > 0.05) differed between the artificial and natural surface, respectively. Measures of sprint, jumping and agility performance declined through the match simulation but surface type did not affect the decrease in performance. For example, the fatigue index of repeated sprints did not differ (P > 0.05) between the artificial, (6.9 ± 2.1%) and natural surface (7.4 ± 2.4%). The ability to turn after sprinting was affected by surface type but this difference was dependent on the type of turn. Although there were small differences in the ability to perform certain movements between artificial and natural surfaces, the results suggest that fatigue and physiological responses to football activity do not differ markedly between surface-type using the high-quality pitches of the present study.  相似文献   

17.
Ratings of perceived exertion (RPE: 0–10) during resistance training with varying programming demands were examined. Blood lactate (BLa) and muscle activation (using surface electromyography: EMG) were measured as potential mediators of RPE responses. Participants performed three sets of single arm (preferred side) bicep curls at 70% of 1 repetition maximum over 4 trials: Trial (A) 3 sets?×?8 repetitions?×?120?s recovery between sets; (B) 3 sets?×?8 repetitions?×?240?s recovery; (C) 3 sets?×?maximum number of repetitions (MNR)?×?120?s recovery; (D) 3 sets?×?MNR?×?240?s recovery. Overall body (RPE-O) and active muscle (RPE-AM) perceptual responses were assessed following each set in each trial. Biceps brachii and brachioradialis muscle EMG was measured during each set for each trial. RPE-O and RPE-AM were not different between Trial A (3.5?±?1 and 6?±?1, respectively) and Trial B (3.5?±?1 and 5.5?±?1, respectively) (p?p?相似文献   

18.
Footwear traction at different areas on artificial and natural grass fields   总被引:1,自引:1,他引:0  
Footwear traction has been linked to lower-extremity injuries with the theory that higher traction leads to an increased incidence of injury. Recent studies have challenged this showing similar injury rates on artificial turf, which has higher traction than natural grass. This could suggest that the magnitude of traction may not be as relevant for injury as relative changes from one location to another, due to inconsistencies in the surface. The purpose of this study was to compare the traction at various locations on an in-fill artificial turf and natural grass surface. A portable traction tester measured the traction of three shoes at six locations on both surfaces. The results indicate that over the course of a season the traction on natural grass changes considerably, especially rotational traction. Surprisingly the artificial turf surface also had areas of high and low traction due to the movement of the in-fill material during play.  相似文献   

19.
The aim of this study was to investigate, for typical shoes and surfaces used in tennis, the relative role of the shoe and surface in providing cushioning during running. Five test surfaces ranging from concrete to artificial turf were selected, together with two shoe models. Impact absorbing ability was assessed mechanically using drop test procedures and biomechanically using peak magnitude and rate of loading of impact force and peak in-shoe pressure data at the lateral heel. Differences in biomechanical variables between shoe-surface combinations were identified using a two-way ANOVA (p < 0.05). Mechanical test results were found to rank the surfaces in the same order regardless of the shoe model, suggesting that the surface is influential in providing cushioning. However, for all mechanical and biomechanical (p < 0.05) variables representing impact absorbing ability, it was found that the difference between shoes was markedly greater than the differences between surfaces. The peak heel pressure data were found to rank the surfaces in the same order as the mechanical tests, while impact force data were not as sensitive to the changes in surface. Correlations between mechanical and biomechanical impact absorption highlighted the importance of testing the shoe-surface combination in mechanical tests, rather than the surface alone. In conclusion, mechanical testing of the shoe-surface combination was found to provide a strong predictor of the impact absorbing ability during running if pressure data were used. In addition, for typical shoe-surface combinations in tennis, the shoe was found to have more potential than the surface to influence impact loading during running. Finally, in-shoe pressure data were found to be more sensitive than force plate data to changes in material cushioning.  相似文献   

20.
Natural turfgrass sports fields exhibit within-field variations due to climatic conditions, field construction, field management, and foot traffic patterns from field usage. Variations within a field could influence the playing surface predictability and require athletes to make abrupt or frequent adjustments that lead to increased ground-derived injury occurrence. This study introduces a new methodology aimed at evaluating the potential relationship between within-field variations of turfgrass sports field properties and ground-derived athlete injuries. Collegiate Club Sport athletes self-reported ground-derived injuries over two years. Soil moisture, turfgrass quality, surface hardness, and turfgrass shear strength were quantified from their two home fields. Hot spot analysis identified significantly high (hot spots) and low (cold spots) values within the fields. Injury locations were compared to hot spot maps each month. Binomial proportion tests determined if there were differences between observed injury proportions and expected proportions. Twenty-three ground-derived injuries were reported overall. The observed injury proportions occurring in turfgrass quality cold spots [0.52 (95% CI 0.29–0.76)] and soil moisture hot spots [0.43 (95% CI 0.22–0.66)] was significantly higher than expected [0.20 (p?p?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号