首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、忽视定义域致错例1求函数y=x-(1-2x)~(1/2)的值域.错解由y=x-(1-2x)~(1/2)得X~2 (1-y)x y~2-1=0.因为关于x的二次方程恒有实根,所以有△=[2(1-y)]-4 (y~2-1)≥0,解得y≤1.故函数的值域为(-∞,1).剖析△=[2(1-y)]~2-4(y~2-1)≥0只能保证方程x~2 2(1-y)x y~2-1=0在整个R上有实根,而不能保证在(-∞,1/2](函数的定义域)上也有实根.  相似文献   

2.
因忽略题中的隐晦条件而造成解题失误,是许多同学解题时易犯的一种错误。例 已知实数x,y满足等式x~2 4y~2-4x=0,求x~2-y~2的最大值和最小值。 有的同学求解如下: 解:∵ x~2 4y~2-4x=0, ∴ y~2=x-1/4x~2。 (1) ∴ x~2-y~2=x~2-(x-1/4x~2) =5/4x~2-x=5/4(x-2/5)~2-1/5 (2) 由(2)式可知,x~2-y~2没有最大值;当x=2/5时,x~2-y~2有最小值,其最小值为-1/5。  相似文献   

3.
有条件限制的双变元取值问题,涉及领域宽,知识面广,需要善于转化,可以通过消元转化为函数求值域问题,但是当题目具有一定特殊形式对,也可通过另外两种常用方法转化.一、消元变函数例1 已知3x~2+2y~2=6x,求 u=x~2+y~2的取值范围.分析:为了求出 u 的范围,需将变量 x,y 用一个变量 x 表示出 u,此时要注意 x 的范围.解:由3x~2+2y~2=6x,得y~2=(1/2)(6x-3x~2)∵y~2≥0,∴x∈[0,2]u=x~2+y~2=x~2+(1/2)(6x-3x~2)=-(1/2)(x-3)~2+(9/2)结合二次函数的图象可知,u∈[0,4]  相似文献   

4.
多元函数最值问题不仅蕴含了丰富的数学思想和方法,而且有利于培养学生联想、化归的解题能力,下面通过例题介绍几种求这类最值问题的方法。一、配方法例1:求函数 f(x,y)=x~2-2xy 6y~2-14x-6y 72的最小值。解:f(x,y)=x~2-2xy 6y~2-14x-6y 72=(x-y-7)~2 5(y-2)~2 3≥3因此当 x-y-7-y-2=0即x=9,y=2时,f(x,y)的最小值为3  相似文献   

5.
在求解有关函数问题时,须仔细考虑函数的定义域,否则会导致解题不完整甚至错误.本文举出几道例题,并加以分析,指出哪些时候须要考虑函数的定义域.一、求函数的值域时例1求函数y=x+2x-x+21的值域.错解将y=x+2x-x+21化为y=1+x-21.∵x-21≠0,∴y≠1,即所求值域为y∈(-∞,1)∪(1,+∞).正解求得定义域为x∈{x|x≠-2,-1,1},将y=x+2x-x+21化为y=1+x-21,∵x-21≠0,∴y≠1,而当x=-1时,y=1+x-21=0;当x=-2时,y=1+x-21=13.∴y≠0,y≠13.故所求值域为y∈(-∞,0)∪0,31$%∪31,$%1∪(1,+∞).二、求函数的单调区间时例2求函数y=log12(x2-3x+2)的单调递增…  相似文献   

6.
错在哪里     
一、北京师大燕化附中史树德来稿题:已知 A={(x,y)|x~2+2y~2-2ax+a~2-2=0},B={(x,y)|y~2-x=0}。在A∩B≠φ的条件下,求实数a的许可值集。解:点集A即椭圆 1/2(x-a)~2+y~2=1 ①点集B是抛物线 y~2=x_0 ②由题意A∩B≠φ,将②代入①并整理得:x~2+2(1-a)x+a~2-2=0 ③方程③必有实根, ∴ 4(1-a)~2-4·(a~2-2)≥0,解得 a ∈(-∝,3/2]。解答错了!错在哪里?  相似文献   

7.
分式是初中代数中的重要内容,由于与它有关的一些问题概念性强,求解方法灵活多变,初学时常常会出现这样或那样的错误.下面举例说明求解此类问题常见的错误,希望能够引起同学们的高度重视.一、忽视分式值为零的条件导致出错例1当x为何值时,分式2x~2+x-1/x+1的值为零?错解由2x~2+x-1=0,可解得x=1/2或x=-1,故当x=1/2或x=-1时,分式2x~2+x-1/x+1的值为零.  相似文献   

8.
文献[1]在对一道分式函数值域的错解进行纠错时,不慎又给出了一个错误答案.摘录如下:问题求函数 y=(1-x~2)~(1/2)/(2 x)的值域.错解原式变形为(x 2)y=(1-x~2)~(1/2),两边平方整理得(y~2 1)x~2 4y~2x 4y~2-1=0,因为 y~2 1>0且 x 是实数,所以△=16y~4-4(y~2 1)(4y~2-1)≥0,从而|y|≤1/3~(1/2),即原函数的值域是[-(3~(1/2)),3~(1/2)].剖析原函数在化为整式及去根号时,扩大了定义域,从而扩大了函数的值域.解因为函数的定义域为-1≤x≤1,所以 x 2>0,可得0≤((1-x~2)~(1/2))/(x 2)≤1/2.当 x=±1时,左端等号成立;当 x=0时,右端等号成立,所以函数的值域为[0,1/2].在高中数学教学中,常遇到一些分式函数的值域求解问题.学生的解题错误率较高,有的甚至感觉  相似文献   

9.
一、填空题 1.在-1/2x,1/n+2,2/x-3/y,2/x-3/y,3x~2+1/3y~3,2/x+2-(y-2)~2,2x/π+2中,属于分式的是 2.在分式4x/x~2-1中.当x____时,它有意义;在分式|x|-3/x~2+3x中.当x____时.分式的值为0. 3.化简:-x/x~2-3x·(x~2-6x+9)=____. 4.若x-1/x=6,则x~2+/x~2的值为____. 5.某油库有汽油 mL,计划每天用去nL,实际用油每天节约了dL,那么这些油可以用____天,比原计划多用____天. 6.当x=____时、代数式1/x+2的值比代数式1-x/2+x的值小2.  相似文献   

10.
一、随意变形例 1.函数 y=x+ 3· x- 3中 ,自变量 x的取值范围是。 (2 0 0 2年全国重点名校中考模拟题 )错解 :∵ y + x+ 3· x- 3=(x+ 3) (x- 3) =x2 - 9,∴ x2 - 9≥ 0 ,解之得 x≥ 3或 x≤ - 3。剖析 :因为变形后的函数 y=x2 - 9与变形前的函数 y=x+ 3· x- 3,它们的自变量取值范围不同 ,故出现错解。正解 :要使函数有意义 ,必须x+ 3≥ 0 ,x- 3≥ 0 ;  解之得 x≥ - 3,x≥ 3。∴自变量 x的取值范围是 x≥ 3.二、随意约分例 2 .函数 y=x2 + x- 2x2 - x- 6 中 ,自变量 x的取值范围是。 (2 0 0 2年山东省烟台市中考模拟题 )错解 :因为 y=(x…  相似文献   

11.
例 1 已知x >0 ,求函数 y =2x2 +3x的值域 .错解 ∵y=2x2 +3x=2x2 +1x +2x≥ 33 2x2 ·1x· 3x=3 3 6.故所求函数的值域为 [3 3 6,+∞ ) .剖析 由于方程 2x2 =1x =2x 无解 ,即等号不能成立 ,故求解错误 .正解 y=2x2 +3x=2x2 +32x+32x≥ 33 2x2 · 32x· 32x=323 3 6.故所求函数值域为 323 3 6,+∞ .例 2 已知 1≤a+b≤ 5 ,-1≤a-b≤ 3 ,求 3a -2b的取值范围 .错解 ∵ 1≤a+b≤ 5 ,①-1≤a-b≤ 3 ,②∴ 0 ≤ (a +b) +(a-b)≤ 8,∴ 0≤a≤ 4,③∴ 0 ≤ 3a≤ 12 ,又∵ 1≤a+b≤ 5 ,   -3≤-a +b≤ 1,∴ -2 ≤ (a +b) +( -a+b)≤ 6,∴ -…  相似文献   

12.
众所皆知,增设性构作给某些数学问题的求解带来化繁为简的生机,但不恰当的增设性构作给某些数学问题的解答蒙上消极被动的阴影,未必被众人所晓,下面对此进行剖析。一只图形式忽视本质增设性构作常诞生于审析问题的形式结构之中,初步产生后将继续结合问题解答的需要逐步修正完善,千万可可忽视,修正完善过程。例1 求函数f(x)=x+(1-x~2)~(1/2)的值域。错解:设x=sinθ,则y=sinθ+cosθ=(2sin(θ+σ/4))~(1/2) 函数f(x)的值域是[-2~(1/2),2~(1/2)]。剖析:这里仅注意f(x)的定义域与三角函数值域之关系,选用三角代换,而忽视了x=sinθ时,(1-x~2)~(1/2)=cosθ≥0并非对任意实数θ恒成立。应将增设修正为x=sinθ,θ∈[-1/2π,1/2π],得出正确结果[-1,2~(1/2)]。例2 求函数y=(x~2-8x+17)~(1/2)+(x~2+4)~(1/2)的最小值。错解:∵ y=((x-4)~2+1)~(1/2)+((x~2+2~2)~(1/2) ∴设z_1=(x-4)+i,z_2=-x-2i, 则y=|z_1|+|z_2|≥|z_1+z_2|=(17)~(1/2),y的最小值是(17)~(1/2)。  相似文献   

13.
试题:已知函数∫(x)=1/2x2-x+3/2的定义域和值域都是[1,b](b>1),求b的值. 解:∫(x)=1/2(x-1)2-1, ∵1≤x≤b. ∴函数∫(x)在[1,b]上是增函数. ∴∫(1)=1,∫(b)=b. ∴1/2b2-b+3/2=b.  相似文献   

14.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

15.
反函数是中学数学的一个难点,在高考中几乎年年出现,虽说其解题步骤简单:1.把函数看作方程,解出x;2.对调x、y;3.原函数的定义域、值域是反函数的值域、定义域.然而在实际解题过程中,经常出现以下误区.误区1:求反函数时忽略原函数的定义域.例1:求函数y=x2+4x+3(x≤-2)的反函数.错解:由已知x2+4x+(3-y)=0,得x=-2±"1+y.∴所得反函数为y=-2±"1+x(x≥-1).剖析:上述解法忽视了原函数的定义域(-∞、-2],故在求得反函数时,应舍去y=-2+"1+x.误区2:求反函数时,忽略原函数的值域.例2:求函数y="x2-2x+4(x≤0)的反函数.错解:因为y2=x2-2x+4,y2-3=(x-1)2…  相似文献   

16.
判别式法是求函数值域的主要方法之一,方程思想在函数问题上的应用。它的理论依是:函数的定义域是非空数集,将原函数看作以y为参数的关于x的二次方程,若方程有数解,必须判别式Δ≥0,从而求得函数的值。因此,判别式法求函数值域的适用范围虽然泛,但又是有条件制约的。一、判别式法的广泛性⑴判别式法不只适用于形如y=x2+b1x+c1x2+b2x+c2(a12+a22≠0)的函数的值域问题。例1:求函数y=x-2-x√的值域。解:由已知得x-y=2-x√∵2-x≥0∴x≤2,又∵x-y≥0∴y≤2y=x-2-x√两边平方,整理得:x2-(2y-x+y2-2=0则解得y≤94又∵y≤2,故原函数的值域为狖y∈R…  相似文献   

17.
已知函数f[lg(x+1)]的定义域是[0,9],求函数f(x~2)的定义域.错解1:由0≤x≤9,得1≤x+1≤10,则0≤lg(x+1)≤1,故函数f(x~2)的定义域为[0,1].  相似文献   

18.
在解答数学题时,经常出现一些错误,这些错误往往是题解者未能意识到的,对一些典型的、带有普遍性质的错解进行分析、究因,对防止出错正确解题,加深理解知识十分有利。为此,本文谨就常见错误以数例加以讨论。一、思维定势妨碍解题一方面未考虑到可能产生的限制干扰,只按既定方向、方法去思考导致错解。例1 过两圆C_1·x~2+y~2-2x-2y+1=0和C_2:x~2+y~2+2x=0的交点坐标及点A(1,1)的圆的方程是( )。  相似文献   

19.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

20.
求函数f(x,y)=x~2 y~2在条件x y=1下的最小值,通常有如下几种解法: 解法一 应用一元函数的配方法 由条件x十y=1,得y=1—x,将其代入f(x,y)=x~2 y~2,得到一元函数 f(x)=x~2 (1—x)~2=2x~2-2x 1=2(x-1/2)~2 1/2(1)因为(x-1/2)~2≥0,故由(1)式知,当x=1/2时,函数f(x)取最小值。将x=1/2代入y-1—x,得y=1/2。因此,当x=1/2,y=1/2时,函数f(x,y)-x~2 y~2在条件x y=1下取最小值(1/2)~2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号