首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
<正>对于组合恒等式的证明无固定的方法,使得人们常感到无从下手,下面介绍证明组合恒等式的几种方法,供读者参考。一、构造组合模型例1求证:(C_n0)0)2+(C_n2+(C_n1)1)2+…+(C_n2+…+(C_nn)n)2=C_(2n)2=C_(2n)n。证明:设集合A={a_1,a_2,…,a_n},集合B={b_1,b_2,…,b_n}。选法一:从A∪B中的2n个不同元素中选取出n个元素的组合数为:C_(2n)n。证明:设集合A={a_1,a_2,…,a_n},集合B={b_1,b_2,…,b_n}。选法一:从A∪B中的2n个不同元素中选取出n个元素的组合数为:C_(2n)n。选法二:从A中取0个元素,从B中取n  相似文献   

2.
<正>二项式定理是组合数学中的重要内容,也是高考的考点之一。在高考中对二项式定理的考查主要是以小题为主,难度不算很大,但其解法有一定的灵活性,下面就来对二项式定理在解题中的应用进行探究。1.二项式定理:(a+b)n=C_0n=C_0nanan+C_nn+C_n1a1a(n-1) b+…+C_n(n-1) b+…+C_nrara(n-r)b(n-r)br+…+C_nr+…+C_nnbnbn(n∈N*)  相似文献   

3.
一个有关组合数的恒等式是 :C1 n+ 2C2 n+3C3n+… +nCnn =n· 2 n- 1 (n∈N ) .下面给出它的三种不同证法 ,其中第三种证法出人意料 ,简洁优美 ,有绝妙之处 .证法 1 倒序相加法 .设Sn =C1 n + 2C2 n + 3C3n +… + (n-1)Cn - 1 n +nCnn,则Sn =nC0 n+ (n -1)C1 n+ (n-2 )C2 n+… +Cn- 1 n ,两式相加 ,得2Sn =n(C0 n+C1 n+C2 n+… +Cn - 1 n +Cnn)=n· 2 n.∴Sn =n· 2 n- 1 .证法 2 逐项转化法 .mCmn =m· n !m !(n -m) !=n· (n -1) !(m-1) !(n -m) !=nCm - 1 n- 1 ,分别令m =1,2 ,3 ,… ,n并分别相加得 .C1 n+ 2C2 n + 3C3n+…  相似文献   

4.
引例求Sn=1·20+2·21+3·22+…+n·2n-1.解析(法一)显然,an=n·2n-1为等差乘等比型数列,可选择采用错位相减法.Sn=1·20+2·21+3·22+…+n·2n-1,2Sn=1·21+2·2++…+(n-1)·2n-1+n·2n,则-Sn=(20+21+22+…+2n-1)-n·2n=2n-1-n·2n,即Sn=(n-1)·2n+1.(法二)注意到an=n·xn-1型以及(xn)′=n·xn-1,可选择以导数为工具,采用构造函数法.令f(x)=1·x0+2·x1+3·x2+…+n·xn-1,不难观察到,(xn)′=n·xn-1,所以f(x)=(x+x2+x3+…+xn)′=((xn+1-x)/(x-1))′=(n·xn+1-(n+1)xn+1))/((x-1)2)  相似文献   

5.
<正>近日闲暇,翻看八年级暑假作业,在发现规律框题中见到一题,经探究有一些心得.原题设α+β=1,αβ=-1.设S_1=α+β,S_2=α2+β2+β2,S_3=α2,S_3=α3+β3+β3,…,S_n=α3,…,S_n=αn+βn+βn.(1)试确定S_2=______,S_3=______,S_4=_____;(2)通过观察,归纳,推断  相似文献   

6.
据说著名的数学家高斯,9岁时就能用巧妙的方法速算1+2+3……+100。这种方法叫倒写相加法,现在我们用这种方法来计算1+2+3+……+n。令a=1+2+3+……+n=n+(n-1)+(n-2)+……+1两式相加,得2a=(1+n)+[2+(n-1)]+[3+(n-2)]+……+(n+1)=n(n+1)∴a=12n(n+1)你一定会为高斯这种妙算拍案叫绝!惊叹之余,你是否想过还能找出什么简便方法来计算1+2+3+……+n吗?方法一:a=1+2+3+……+n=[n-(n-1)]+[n-(n-2)]+[n-(n-3)]+……+(n-0)=n·n-[(n-1)+(n-2)+(n-3)+……+0]=n2-(a-n)解方程a=n2-(a-n),得a=12n(n+1)方法二:注意到任一自然数k都能写成k=12[k(k+1)-(k-1)k]…  相似文献   

7.
本文介绍一类不等式的证明方法。这种证法简洁,有章可循。下面举例说明: [例1] 证明不等式 1/2·3/4…(2n-1)/2n<1/((2n+1)~(1/2))。证明:令S_n=1/((2n+1)~(1/2))则 S_(n-1)=1/((2n+1)~(1/2)) ∵ S_n/S_(n-1)=((2n-1)~(1/2))/((2n+1)~(1/2))=(2n-1)/((4n~2-1)~(1/2))>(2n-1)/2n。(n≥2) 而S_1=1/(3~(1/2))>1/2。故:1/2·3/4…(2n-1)/(2n)相似文献   

8.
<正>1问题呈现命题1若n为正整数,则n(1/2)+(n+1)(1/2)+(n+1)(1/2)+(n+2)(1/2)+(n+2)(1/2)为无理数.文[1]在证明命题1时,运用了反证法,不妨摘录其中的一段,如下:"假设n(1/2)为无理数.文[1]在证明命题1时,运用了反证法,不妨摘录其中的一段,如下:"假设n(1/2)+(n+1)(1/2)+(n+1)(1/2)+(n+2)(1/2)+(n+2)(1/2)为有理数,则存在互质的正整数a和b,使n(1/2)为有理数,则存在互质的正整数a和b,使n(1/2)+(n+1)(1/2)+(n+1)(1/2)+(n+2)(1/2)+(n+2)(1/2)=a/b,得(n+1)(1/2)=a/b,得(n+1)(1/2)=a/b-n(1/2)=a/b-n(1/2)+(n+2)(1/2)+(n+2)(1/2).于是又得  相似文献   

9.
组合恒等式证明问题,一般难度较大,学生往往不易掌握。下面就来谈谈组合恒等式证明的几种方法。 1.置换法。在公式(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…+C_n~ra~(n-r)b~r+…+C_n~nb~n中,适当地选择某个数来置换a和b,原恒等式即可得证。例1.求证:①2~n-C_n~12~(n-1)+C_n~22~(n-2)+…+(-1)~(n-1)C_n~(n-1)2+(-1)~n=1; ②3~n-C_n~13~(n-1)+C_n~23~(n-2)+…+(-1)~(n-1)C_n~(n-1)3+(-1)~n=2~n。  相似文献   

10.
两恒等式a_n=a_1·(a_2/a_1)……(a_n/a_(n-1))及a_n=a_1+(a_2-a_1)+…+(a_n-a_(n-1))分别被称之为等比恒等式与等差恒等式。在处理很多数列问题时,若能恰到好处地利用这两个恒等式,则会给求解带来很多方便,下面略举几例。 例1 (2002年浙江等21省市高考题)设数列{a_n}满足a_(n+1)=a_n~2-na_n+1,n∈N~+。 (1)当a_1=2时,求a_2、a_3、a_4,并由此猜想出a_n的一个通项公式。 (2)当a_1≥3时,证明对所有的n≥1有: (i)a_n≥n+2; (ii)1/(1+a_1)+1/(1+a_2)+…+1/(1+a_n)≥1/2。 简解:(1)略。 (2)(i)用数学归纳法:①当n=1,a_1≥3=1+2结论成立。  相似文献   

11.
<正>题设:x_i为正实数(i=1,2,…,n),且x_1x_2…x_n=1,n∈N,n>3,m是实数,则当m≥n-2或m≤-n+1时,有sum from i=1 to n x_im/((1+x_1)…(1+x_(i-1)(1+x_(i+1)…(1+x_n))≥n/2m/((1+x_1)…(1+x_(i-1)(1+x_(i+1)…(1+x_n))≥n/2(n-1).第一位正确解答者将获得奖金100元.  相似文献   

12.
<正>题目设a,b,c> 0,且abc=1,求证:(2(1+a2)(1+b2)(1+b2)(1+c2)(1+c2))(1/2)≥1+a+b+c.这是2017年沙特阿拉伯JBMO的一道不等式,左边有根号而右边没有,因此将左边根号去掉是解题的关键.下面介绍两个漂亮证法与读者分享.证法1设复数z_1=1+ai,z_2=1+bi,z_3=1+ci,则1+a2))(1/2)≥1+a+b+c.这是2017年沙特阿拉伯JBMO的一道不等式,左边有根号而右边没有,因此将左边根号去掉是解题的关键.下面介绍两个漂亮证法与读者分享.证法1设复数z_1=1+ai,z_2=1+bi,z_3=1+ci,则1+a2=z_12=z_12,1+b2,1+b2=z_22=z_22,1+c2,1+c2=z_32=z_32,  相似文献   

13.
先看一个例题: 例1 求证:C_n~1/-C_n~2/2+C_n~3/3-……+(-1)~(n-1)·C_n~n/n=1+1/2+1/3+……+1/n。求证式等号两边均有n项。可用递推方法证之。证明:记S_n=C_n~1/1-C_n~3/2+C_n~3/3-……+(-1)~(n-1),C_n~n/n。  相似文献   

14.
杨辉恒等式即现行高中数学教材中所述组合数的第二个基本性质:C_(n-1)~(i-1) C_(n-1)~i=C_n~i(1≤i≤n-1)(1) 我们可以结合等差数列将其推广为定理设a_0,a_1,…,a_n是一个等差数列,则当0≤i≤n时,恒有 a_iC_n~i=a_nC_(n-1)~(i-1) a_0C_(n-1)~i(2) 证明:当i=0或n时,按规定有C_(n-1)~n=0,C_(n-1)~(-1)=0,此时,(2)式显然成立。当1≤i≤n-1时,设等差数列a_0,a_1,…,a_n的公差为d,则a_i=a_0 id (0≤i≤n),于是  相似文献   

15.
20 0 3年高考江苏卷第 (2 1)题内容新、题型新 ,集中考查了导数和不等式证明等知识 ,解答的思路和方法较多 ,这里给出不同层次的若干思路和方法供参考 .(2 1)已知 a>0 ,n为正整数 .( )设 y=(x- a) n,证明 y′=n(x- a) n-1 ;( )设 fn(x) =xn- (x- a) n,对任意 n≥ a,证明 fn+ 1 ′(n+1) >(n+1) fn′(n) .证明  ( ) y′=limΔx→ 0(x+Δx- a) n- (x- a) nΔx=limΔx→ 0 [(x+Δx- a) n-1 +(x+Δx- a) n-2 (x- a) +… +(x- a) n-1 ]=(x- a) n-1 +(x- a) n-2 (x- a) +(x- a) n-3 (x- a) 2 +… +(x- a) n-1=n(x- a) n-1 . (洪成、王严、王雪 供…  相似文献   

16.
'95高考第12题:等差数列{a_n}、{b_n}的前n项和分别为S_n与T_n,若S_n/Tn=2n/(3n 1),则(?)a_n/b_n等于(A)1(B)(6~(1/2))/3(C)2/3(D)4/9.应该说这是一道考察基础且具有一定灵活性的好题.就解法看,(i)从熟悉的关系a_n=S_n-S_(n-1)着眼,由题设可转化为S_n=kn·2n.T_n=kn·(3n 1)(k∈R且k≠0)得a_n=2k(2n-1).b_n=2k(3n-1)∴(?)2k(2n-1)/2k(3n-1)=(?)(2n-1)/(3n-1)=2/3.(ii)从灵活利用公  相似文献   

17.
本文给出组合恒等式C_n~1+2C_N~2+3C_n~3+…+nC_n~n=n·2~(n-1)的六种证法.这个组合恒等式在证明其它组合恒等式和计算组合数的和时常常有用.  相似文献   

18.
下面用数列知识解答二道物理问题.【例1】 A、B两点相距s,将s平分为n等分,今让一物体(可视为质点)从A点由静止开始向B做匀加速运动,但每过一个等分点,加速度都增加an,试求该物体到达B点的速度.解析:设物体经过第1,2,3,…,n段路程后的速度分别为v1,v2,v3,…,vn则有v21=2asn,v22-v21=2a(1+1n)sn,v23-v22=2a(1+2n)sn,……,v2n-v2n-1=2a(1+n-1n)sn,将上述各式两端分别相加后得v2n=2asn[1+(1+1n)+(1+2n)+……+(1+n-1n)]=2asn[n+(1n+2n+……+n-1n)].上式中的1n+2n+……+n-1n为一项数为n-1的等差数列的和,其和为1n[1+2+……+(n-1)]1n·1+(n-1)2…  相似文献   

19.
(2 2 )设 a0 为常数 ,且 an =3n-1 -2 an-1 (n∈ N* ) .( )证明对任意 n≥ 1,an =15 [3n +(- 1) n-1 .2 n]+(- 1) n .2 na0 .( )假设对任意 n≥ 1,有 an >an-1 ,求a0 取值范围 .证法 1  ( )由已知 an =3n-1 -2 an-1 3.an3n =1- 2 .an-1 3n-1 .令 bn=an3n,则 3bn= 1- 2 bn-1 3(bn - 15 ) =- 2 (bn-1 -15 ) 数列 { bn- 15 }是以 b0 - 15 为首项 ,公比为 - 23的等比数列 ,且 b0 - 15 =a0 - 15于是 bn - 15 =(- 23) n(a0 - 15 ) ,又 bn =an3n,∴ an3n =(- 23) n(a0 - 15 ) +15 an =15 [3n +(- 1) n-1 .2 n]+(- 1) n .2 na.( )由 n≥ 1,an …  相似文献   

20.
上教版高三数学教材中给出的样本方差、样本标准差的计算公式不同于其他版本的教材,给学生学习带来困扰.本文从用样本标准差评价总体标准差时需遵守的三大标准:无偏性、有效性、一致性出发,说明上教版样本标准差s=(((x_1-)2+(x_2-)2+(x_2-)2+…+(x_n-))2+…+(x_n-))2/(n-1))2/(n-1))(1/2)作为总体标准差的点估计值的合理性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号