首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Knee joint coordination during jump landing in different directions is an important consideration for injury prevention. The aim of the current study was to investigate knee and hip kinematics on the non-dominant and dominant limbs during landing. A total of 19 female volleyball athletes performed single-leg jump-landing tests in four directions; forward (0°), diagonal (30° and 60°) and lateral (90°) directions. Kinematic and ground reaction force data were collected using a 10-camera Vicon system and an AMTI force plate. Knee and hip joint angles, and knee angular velocities were calculated using a lower extremity model in Visual3D. A two factor repeated measures ANOVA was performed to explore limb dominance and jump direction. Significant differences were seen between the jump directions for; angular velocity at initial contact (p < 0.001), angular velocity at peak vertical ground reaction force (p < 0.001), and knee flexion excursion (p = 0.016). Knee coordination was observed to be poorer in the early phase of velocity-angle plot during landing in lateral direction compared to forward and diagonal directions. The non-dominant limb seemed to have better coordination than the dominant limb during multi-direction jump landing. Therefore, dominant limbs appear to be at a higher injury risk than non-dominant limbs.  相似文献   

2.
Unanticipated direction to cut after landing may alter the lower extremity landing biomechanics when performing landing motions. These alterations may potentially increase the risk of ACL injury. The purpose of this study was to determine if an unanticipated side-cut affects lower extremity landing biomechanics in females. Eighteen recreational female athletes participated in two blocks of testing: the first block of testing consisted of three acceptable trials of anticipated dominant limb and non-dominant limb 45-degree diagonal cutting after landing, which were performed in a counterbalanced order. The second block of testing consisted of three acceptable trials of unanticipated dominant limb and non-dominant limb diagonal cutting after landing. Data analysis mainly focused on the dominant limb landing biomechanics. Unanticipated side-cut landing, compared (paired t-test, p < 0.05) to the anticipated landings, resulted in less hip abduction and tibial internal rotation angle at initial contact (IC) and a lower maximum ankle inversion angle and a greater maximum knee abduction angle, and knee and hip displacement. Also, greater posterior GRF and a longer time to peak medial GRF were exhibited. These outcomes indicate that athletes may adapt their landing mechanics to land unsafely when encountering an unanticipated event.  相似文献   

3.
This study compared the acute and long-term effects of intermittent and continuous static stretching training on straight leg raise range of motion (ROM). Seventy-seven preadolescent female gymnasts were divided into a stretching (n = 57), and a control group (n = 20). The stretching group performed static stretching of the hip extensors of both legs, three times per week for 15 weeks. One leg performed intermittent (3 × 30 s with 30 s rest) while the other leg performed continuous stretching (90 s). ROM pre- and post-stretching was measured at baseline, on weeks 3, 6, 9, 12, 15 and after 2 weeks of detraining. ROM was increased during both intermittent and continuous stretching training, but remained unchanged in the control group. Intermittent stretching conferred a larger improvement in ROM compared to both continuous stretching and control from week 3, until the end of training, and following detraining (p = 0.045 to 0.001 and d = 0.80 to 1.41). During detraining, ROM after the intermittent protocol decreased (p = 0.001), while it was maintained after the continuous protocol (p = 0.36). Acute increases in ROM following the intermittent stretching were also larger than in the continuous (p = 0.038). Intermittent stretching was more effective than continuous, for both long-term and acute ROM enhancement in preadolescent female athletes.  相似文献   

4.
Ankle sprain is a common injury in volleyball. Poor stabilometric performance (SP) is associated with high risks of sustaining ankle sprain. Balance training can improve SP and reduce ankle sprain, but no research has studied the effects of detraining on SP in highly trained athletes. The purpose of this study was to determine the effects of one-month postseason break on SP in female volleyball players. Eleven NCAA female volleyball players participated in two eye-closed single-leg stance tests before and after a one-month postseason break. Stance time, center of pressure (COP) area, COP standard deviation, and COP mean velocity were assessed during the tests. During the postseason break, subjects conducted self-selected exercise and the average training duration was 87% lower compared to the competition season. Subjects demonstrated significant increases in anterioposterior (A/P) COP standard deviation (1.6 ± 0.4 vs. 1.8 ± 0.4 cm, p = 0.05), mediolateral (M/L) COP velocity (6.5 ± 1.5 vs. 7.1 ± 1.3 cm/s, p = 0.05), and overall COP velocity (10.1 ± 2.0 vs. 11.6 ± 1.9 cm/s, p = 0.02) after postseason break. SP decreased in highly trained female volleyball players after one-month postseason break. The decrease in SP indicated a possible increased risk for ankle sprain injury.  相似文献   

5.
Anterior cruciate ligament (ACL) injury prevention programmes have not been as successful at reducing injury rates in women’s basketball as in soccer. This randomised controlled trial (ClinicalTrials.gov #NCT02530333) compared biomechanical adaptations in basketball and soccer players during jump-landing activities after an ACL injury prevention programme. Eighty-seven athletes were cluster randomised into intervention (6-week programme) and control groups. Three-dimensional biomechanical analyses of drop vertical jump (DVJ), double- (SAG-DL) and single-leg (SAG-SL) sagittal, and double- (FRONT-DL) and single-leg (FRONT-SL) frontal plane jump landing tasks were tested before and after the intervention. Peak angles, excursions, and joint moments were analysed using two-way MANCOVAs of post-test scores while controlling for pre-test scores. During SAG-SL the basketball intervention group exhibited increased peak knee abduction angles (= .004) and excursions (= .003) compared to the basketball control group (= .01) and soccer intervention group (= .01). During FRONT-SL, the basketball intervention group exhibited greater knee flexion excursion after training than the control group (= .01), but not the soccer intervention group (= .11). Although women’s soccer players exhibit greater improvements in knee abduction kinematics than basketball players, these athletes largely exhibit similar biomechanical adaptations to ACL injury prevention programmes.  相似文献   

6.
Side-to-side differences of lower extremities may influence the likelihood of injury. Moreover, adding the complexity of jump-landing direction would help to explain lower extremity control during sport activities. The aim was to determine the effects of limb dominance and jump-landing direction on lower extremity biomechanics. Nineteen female volleyball athletes participated. Both dominant limbs (DLs) and non-dominant limbs (NLs) were examined in single-leg jump-landing tests in four directions, including forward (0°), diagonal (30° and 60°), and lateral (90°) directions. Kinematic marker trajectories and ground reaction forces were collected using a 10 camera Vicon system and an AMTI force plate. Repeated measures ANOVA (2?×?4, limb?×?direction) was used to analyse. The finding showed that, at peak vertical GRF, a significant interaction of limb dominance and direction effects was found in the hip flexion angle and lower extremity joint kinetics (p?<?.05). NLs and DLs exhibited significantly different strategies while landing in various directions. Significantly higher increase of ankle dorsiflexion angle was observed in lateral direction compared to other directions for both DLs and NLs (p?<?.05). Increasingly using ankle dorsiflexion was observed from the forward to the lateral direction for both DLs and NLs. However, NLs and DLs preferentially used different strategies of joint moment organization to respond to similar VGRFs in various directions. The response pattern of DLs might not be effective and may expose DLs to a higher injury risk, especially with regard to landing with awkward posture compared with NLs.  相似文献   

7.
The aim of this investigation is to assess the effectiveness of a 6-week balance training (BT) protocol, integrated in regular training sessions, on postural sway of young female volleyball players (n = 26, age 13.0 ± 0.2 years) divided into two groups (intervention and control; 13 per group). Trials were performed for bipedal and unipedal stance conditions before and after the BT protocol, using a pressure platform to collect center-of-pressure (COP) time series that were processed to calculate sway area, COP path length, and maximum displacement range in anteroposterior and mediolateral directions. The intervention group exhibited smaller sway areas in eyes closed conditions (intervention = 42.76 mm2, control = 67.60 mm2; p < 0.05) and Romberg quotients (intervention = 1.11 mm, control = 1.82 mm) in bipedal stance, while all the other parameters were unaffected. BT also reduced sway area (intervention = 122.70 mm2, control = 187.18 mm2) and anteroposterior COP displacements (intervention = 20.18 mm, control = 22.38 mm) of the non-dominant limb for single-leg stance. No significant change was found for the dominant limb. Although it is possible to hypothesize a beneficial effect of BT on young athletes, further investigations are required to clarify its actual effect on balance performance with respect to normal volleyball training.  相似文献   

8.
Track and field events place different demands on athletes and may have an effect on balance. This study investigated the effects of event specialty, gender, and leg dominance on balance among adolescent track and field athletes. Forty healthy adolescent track and field athletes (male = 23, female = 17) categorised into three different groups (sprinter = 20, distance runners = 13, throwers = 7) had their single leg static balance measured with the eyes open and the eyes closed using an AMTI force platform. Dependent variables included average displacement (cm) of the centre of pressure (COP) in the anterior/posterior direction and medial/lateral directions, the average velocity of the COP (cm/s) and the 95% ellipse area (cm2). Variables were analysed using a 3 (event specialty) × 2 (gender) × 2 (leg) ANOVA with repeated measures on the leg variable (p < 0.05). There was a significant difference (p < 0.05) in the average displacement of the COP in the medial/lateral direction for both the eyes open and closed condition, with the non-dominant leg demonstrating greater displacement than the dominant leg. This might increase the risk of injury for the non-dominant leg, but additional data should be collected and analysed on both dynamic balance and performance.  相似文献   

9.
The effectiveness of vertical drop jumps (VDJs) to screen for non-contact ACL injuries is unclear. This may be contributed to by discrete point analysis, which does not evaluate patterns of movement. Also, limited research exists on the second landing of VDJs, potential lower limb performance asymmetries and the effect of fatigue. Statistical parametric mapping investigated the main effects of landing, limb dominance and a high intensity, intermittent exercise protocol (HIIP) on VDJ biomechanics. Twenty-two male athletes (21.9 ± 1.1 years, 180.5 ± 5.5 cm, 79.4 ± 7.8 kg) performed VDJs pre- and post-HIIP. Repeated measures ANOVA identified pattern differences during the eccentric phases of the first and second landings bilaterally. The first landing displayed greater (internal) knee flexor (η2 = 0.165), external rotator (η2 = 0.113) and valgus (η2 = 0.126) moments and greater hip (η2 = 0.062) and knee (η2 = 0.080) flexion. The dominant limb generated greater knee flexor (η2 = 0.062), external rotator (η2 = 0.110) and valgus (η2 = 0.065) moments. The HIIP only had one effect, increased thoracic flexion relative to the pelvis (η2 = 0.088). Finally, the dominant limb demonstrated greater knee extensor moments during the second landing (η2 = 0.100). ACL injury risk factors were present in both landings of VDJs with the dominant limb at potentially greater injury risk. Therefore, VDJ screenings should analyse both landings bilaterally.  相似文献   

10.
ABSTRACT

Anterior cruciate ligament (ACL) injuries in badminton commonly occur during single-leg landing after an overhead stroke in the backhand-side court. This study compared differences in trunk acceleration and kinematic variables during single-leg landing in the forehand- and backhand-side courts after an overhead stroke. Eighteen female junior badminton players performed two singles games while wearing a tri-axial accelerometer. The moment that over 4g of resultant acceleration was generated was determined using synchronised video cameras. Trunk lateral inclination and hip abduction angles at the point of landing with over 4g of resultant acceleration were analysed. Mediolateral acceleration in the backhand-side court was greater than that in the opposite-side court (< 0.001, ES = 0.840). Both trunk lateral angles were larger than those previously reported in injured participants and the hip abduction angle in the backhand-side court was larger than that in the forehand-side court (< 0.001, ES = 2.357). The lateral and vertical acceleration in the backhand-side court showed moderate-to-strong correlations with the trunk and hip angles. The mediolateral physical demand and high-risk posture in the backhand-side court may be associated with a higher incidence of knee injuries during badminton games.  相似文献   

11.
Abstract

In the present study, we examined the independent and combined effects of an inspiratory muscle warm-up and inspiratory muscle training on intermittent running to exhaustion. Twelve males were recruited to undertake four experimental trials. Two trials (Trials 1 and 2) preceded either a 4-week training period of 1 × 30 breaths twice daily at 50% (experimental group) or 15% (control group) maximal inspiratory mouth pressure (PImax). A further two trials (Trials 3 and 4) were performed after the 4 weeks. Trials 2 and 4 were preceded by a warm-up: 2 × 30 breaths at 40% PImax. Pre-training PImax and distance covered increased (P < 0.05) similarly between groups after the warm-up (~11% and ~5–7% PImax and distance covered, respectively). After training, PImax increased by 20 ± 6.1% (P < 0.01; d = 3.6) and 26.7 ± 6.3% (P < 0.01; d = 3.1) when training and warm-up were combined in the experimental group. Distance covered increased after training in the experimental group by 12 ± 4.9% (P < 0.01; d = 3.6) and 14.9 ± 4.5% (P < 0.01; d = 2.3) when training and warm-up interventions were combined. In conclusion, inspiratory muscle training and inspiratory muscle warm-up can both increase running distance independently, but the greatest increase is observed when they are combined.  相似文献   

12.
Purpose: This feasibility study compared the effects of 2 movement programs, traditional and mastery climate (i.e., the Children’s Health Activity Motor Program [CHAMP]), on lesson context and children’s physical activity (PA) levels. A secondary aim was to examine sex differences in PA levels in both programs. Method: Seventy-two preschoolers served as participants and were assigned to a movement program. Physical activity levels and lesson context were assessed with the System for Observing Fitness Instruction Time. Results: Preschoolers in CHAMP spent more time walking (p < .05, = 3.3), more time in moderate-to-vigorous PA (MVPA; p < .05, = 3.6), and less time standing (p < .05, = 3.8) compared with those in a traditional movement program. Boys in both programs spent less time standing (< .05, = 4.8) and more time in vigorous activity (< .05, = 5.8) and MVPA (p < .05, = 4.4) compared with girls. During CHAMP, children spent less time engaged in management and knowledge (< .05, = 1.4, and < .001, = 0.9, respectively) and more time in skill practice (< .05, = 1.5). Conclusion: The findings support that participation in CHAMP elicits more MVPA in preschool-age children compared with a traditional movement program. The Children’s Health Activity Motor Program provided children with more class time devoted to skill practice. The program appears to be an innovative approach that is beneficial for PA engagement and could contribute positively to children’s health.  相似文献   

13.
This study sought to compare the kinetics and kinematics data in a group of habitual shod runners when running in traditional running shoes and newly designed minimalist shoes with lug platform. This novel footwear design claims to simulate barefoot running and reduce energy loss during impact. We compared footstrike angle (FSA), vertical average (VALR) and instantaneous (VILR) loading rates, energy loss and initial vertical stiffness between two shoe conditions. Runners demonstrated a decreased FSA while running in minimalist shoes with lug platform than traditional shoes (= 0.003; Cohen’s = 0.918). However, we did not observe a landing pattern transition. VALR and VILR between two footwear conditions showed no significant difference (= 0.191–0.258; Cohen’s = 0.304–0.460). Initial vertical stiffness (= 0.032; Cohen’s = 0.671) and energy loss (= 0.044; Cohen’s = 0.578) were greater when running in minimalist shoes with lug platform. The results show that minimalist shoes with lug platform reduce the FSA but may not lead to a landing pattern switch or lower vertical loading rates. Interestingly, the new shoe design leads to a greater energy loss than traditional running shoes, which could be explained by a higher initial vertical stiffness.  相似文献   

14.
Purpose: The purpose of this investigation was to examine the effects of a submaximal running warm-up on running performance in male endurance athletes (n = 16, Mage = 21 ± 2 years, MVO2max = 69.3 ± 5.1 mL/kg/min). Method: Endurance performance was determined by a 30-min distance trial after control and submaximal running warm-up conditions in a randomized crossover fashion. The warm-up began with 5 min of quiet sitting, followed by 6 min of submaximal running split into 2-min intervals at speeds corresponding to 45%, 55%, and 65% maximal oxygen consumption (VO2max). A 2-min walk at 3.2 km/hr concluded the 13-min warm-up protocol. For the control condition, participants sat quietly for 13 min. VO2 and heart rate (HR) were determined at Minutes 0, 5, and 13 of the pre-exercise protocol in each condition. Results: At the end of 13 min prior to the distance trial, mean VO2 (warm-up = 14.1 ± 2.2 mL/kg/min vs. control = 5.5 ± 1.7 mL/kg/min) and mean HR (warm-up = 105 ± 11 bpm vs. control = 67 ± 11 bpm) were statistically greater (p < .001) in the warm-up condition compared with the control condition. The distance run did not statistically differ (p = .37) between the warm-up (7.8 ± 0.5 km) and control (7.7 ± 0.6 km) conditions; however, effect size calculation revealed a small effect (d = 0.2) in favor of the warm-up condition. Thus, the warm-up employed may have important and practical implications to determine placing among high-level athletes in close races. Conclusions: These findings suggest a submaximal running warm-up may have a small but critical effect on a 30-min distance trial in competitive endurance athletes. Further, the warm-up elicited increases in physiological variables VO2 and HR prior to performance; thus, a submaximal specific warm-up should warrant consideration.  相似文献   

15.
This assessor-blinded, randomized controlled superiority trial investigated the efficacy of the 10-week Nordic Hamstring exercise (NHE) protocol on sprint performance in football players.

Thirty-five amateur male players (age: 17–26 years) were randomized to a do-as-usual control group (CG; n = 17) or to 10-weeks of supervised strength training using the NHE in-season (IG; n = 18). A repeated-sprint test, consisting of 4 × 6 10 m sprints, with 15 s recovery period between sprints and 180 s between sets, was conducted to evaluate total sprint time as the primary outcome. Secondary outcomes were best 10 m sprint time (10mST) and sprint time during the last sprint (L10mST). Additionally, peak eccentric hamstring strength (ECC-PHS) and eccentric hamstring strength capacity (ECC-CAPHS) were measured during the NHE.

Ten players were lost to follow-up, thus 25 players were analyzed (CG n = 14; IG n = 11). Between-group differences in mean changes were observed in favor of the IG for sprint performance outcomes; TST (?0.649 s, p = 0.056, = 0.38), 10mST (?0.047 s, p = 0.005, = 0.64) and L10mST (?0.052 s, p = 0.094, = 0.59), and for strength outcomes; ECC-PHS (62.3 N, p = 0.006, = 0.92), and ECC-CAPHS (951 N, p = 0.005, = 0.95).

In conclusion, the NHE showed small-to-medium improvements in sprint performance and large increases in peak eccentric hamstring strength and capacity.

Trial Registration Number: NCT02674919  相似文献   

16.
Abstract

The aim of this study was to investigate the acute effects of a vibration-assisted static stretching intervention on enhancing split range of motion in gymnasts matched on initial range of motion. Twenty-two female artistic gymnasts (mean age 13.8 years, s=2.3) matched for age (±6 months) and competitive level were randomly assigned to a static stretching intervention with or without simultaneous vibration. The test consisted of adopting a forward split position with the rear leg bent to 90° and held vertically against a matted block while the pelvis remained perpendicular to the lines of the two legs. The gymnast was instructed to descend into the lowest split position of her comfortable pain tolerance. Positions were videotaped and digitized creating an angle between the split legs. The stretching intervention consisted of a forward split position with emphasis on the front leg hamstring muscle group, followed by a forward lunge position with emphasis on the rear leg quadriceps muscle group. In each position, four sets of stretches were completed each of 10 s duration with 5 s of rest between sets. The experimental group performed stretches with the vibration device turned on while the control group performed the same stretches with the vibration device turned off. A pre-test was performed to obtain baseline scores with the post-test following immediately after the vibration or control stretching intervention. Difference scores were calculated between the pre-test and post-test for each gymnast, and compared between groups using independent t-tests. Results showed significant post-test differences between the vibration and non-vibration groups (mean difference 12.2±5.2° vibration vs. 7.8±3.5° non-vibration, P=0.030) in the non-dominant limb, but no significant differences in the dominant limb (mean difference 10.2±4.3° vibration vs. 7.9±6.1° non-vibration, P=0.32). Vibration-assisted static stretching may provide a greater stimulus for range of motion improvements in limbs that have a lower initial level of flexibility.  相似文献   

17.
Landing with a low knee flexion angle after volleyball block jumps may be associated with an increased risk of anterior cruciate ligament (ACL) injury. The aim of the present study was to identify the types of volleyball landings after blocks where the knee flexion angle is found to be under a critical knee flexion angle value of 30° at the instant of the first peak of the ground reaction force (GRF). Synchronized kinematic and kinetic data were collected for each trial. T-tests were used to determine if each knee flexion angle at the instant of the peak GRF was significantly different from the critical value of 30°. A repeated measures ANOVA was used to compare knee flexion angle, time to first peak and the magnitude of the first peak of the resultant GRF and knee stiffness. Significantly lower knee flexion angles were found in the “go” landing (p?=?.01, ES?=?0.6) and the “reverse” landing (p?=?.02, ES?=?0.6) only. The results for knee flexion angle and GRF parameters indicated a significant difference between a “reverse” and “go” and other types of landings, except the “side stick” landing for GRF. The “reverse” and “go” landings may present a risk for ACL injury due to the single-leg landing of these activities that have an associated mediolateral movement.  相似文献   

18.
This study describes the body composition traits of modern-day elite rugby union athletes according to playing position and ethnicity. Thirty-seven international Australian rugby athletes of Caucasian and Polynesian descent undertook body composition assessment using dual-energy X-ray absorptiometry and surface anthropometry. Forwards were significantly taller, heavier and had a greater total fat mass and lean mass than backs. Backs displayed a higher percentage lean mass and lower sum of seven skinfolds and percentage fat mass. While no whole body composition differences were seen between ethnicities, significant regional differences were observed. In the periphery (arm and leg) regions, Polynesians had a greater proportion of fat mass (53.1% vs. 51.3%, P = 0.052, = 0.5) and lean mass (49.7% vs. 48.6%, P = 0.040, = 0.9), while in the trunk region a lower proportion of fat mass (37.2% vs. 39.5%, P = 0.019, = 0.7) and lean mass (45.6% vs. 46.8%, P = 0.020, = 1.1). Significant differences were also seen between Caucasian and Polynesian forwards in leg lean mass (31.4 kg vs. 35.9 kg, P = 0.014, = 2.4) and periphery lean mass (43.8 kg vs. 49.6 kg, P = 0.022, = 2.4). Elite Polynesian rugby athletes have different distribution patterns of fat mass and lean mass compared to Caucasians, which may influence their suitability for particular positions.  相似文献   

19.
The aim of this study was to examine the content validity, construct validity and reliability of the newly developed Basketball Jump Shooting Accuracy Test (BJSAT). Basketball athletes from different playing levels (State Basketball League [SBL], n = 30, age: 22.7 ± 6.1 yr; SBL Division I, n = 11, age: 20.6 ± 2.1 yr) completed four separate trials of the BJSAT with each trial consisting of shot attempts from two- and three-point distances at pre-determined court locations. Each shot attempt was scored utilising a criteria where higher scores were given when greater accuracy was exhibited. The BJSAT detected a significant, large difference in accuracy between two- and three-point shots (d = 0.99, p < 0.01). Relative reliability across the repeated trials was rated as moderate for all athletes (intraclass correlation coefficient [ICC] = 0.71, p < 0.01) and good for the SBL athletes (ICC = 0.78, p < 0.01). Absolute reliability for all athletes was above the acceptable benchmark (coefficient of variation = 16.2%); however superior to skill tests available in the literature. In conclusion, the BJSAT is sensitive to two- and three-point shooting accuracy and can reliably assess jump shooting accuracy in basketball athletes.  相似文献   

20.
ABSTRACT

Ankle injuries are highly prevalent in ballet, with strength highlighted as a primary risk factor. To profile ankle strength, fourteen female ballet dancers (age: 19.29 ± 1.59 years) completed an isokinetic testing protocol comprising concentric eversion (CONEV) and inversion (CONINV), and, eccentric inversion (ECCINV) trials at four angular velocities (30° · s?1, 60° · s?1, 90° · s?1, 120° · s?1) for both the dominant and non-dominant limb. In addition to Peak Torque (PT) and the corresponding Dynamic Control Ratios (DCRs), angle-specific derivatives of strength (AST) and Functional Range (FR) were calculated. There was no evidence of any significant bilateral strength asymmetry (p = 0.90) across all metrics, and no significant interactions with limb and contraction mode or velocity. A significant main effect for contraction mode (p = 0.001) highlighted greater ECCINV strength – which was maintained with increasing isokinetic velocity – in contrast to reductions in CONEV and CONINV strength. Specifically, dancers are ECCINV dominant at angular velocities greater than 60° · s?1, which is likely to be characteristic of most functional tasks. The lack of bilateral asymmetry may be attributed to dance training interventions that facilitate bilateral development, but ipsilateral mode and velocity-specific asymmetries have implications for injury risk and the training needs of female ballet dancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号