首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

2.
基本不等式设a≥0,b≥0,则a+b/2≥√ab(当且仅当a=b时等号成立).最值原理设x>0,y>0.(1)若x+y=S(定值),则当且仅当x=y时,xy取得最大值S2/4;(2)若xy=P(定值),则当且仅当x=y时,x+y取得最大值2√P.  相似文献   

3.
<正>1.知识具备x2≥0→(a-b)2≥0→a2+b2-2ab≥0,即:(1)a2+b2≥2ab,注意乘积为定值,平方和有最小值,当且仅当a=b时取等号.(2)ab≤a2+b22,注意平方和为定值,乘积有最大值,当且仅当a=b时取等号.若a、b∈R+,则有:(3)a+b≥2 ab%姨,乘积为定值,和有最小值,当且仅当a=b时取等号.(4)ab≤(a+b2)2,和为定值,乘积有最大值,当且仅当a=b  相似文献   

4.
1 问题提出我们经常看到这样一道题:已知a >0 ,b >0 ,且a b =1 ,求(a 1a) 2 (b 1b) 2 的最小值.该题通常这样求解:(a 1a) 2 (b 1b) 2 =a2 b2 1a2 1b2 4=(a b) 2 -2ab 1a2 1b2 4=5 -2ab 1a2 1b2 ≥5 -2 ( a b2 ) 2 2ab=92 2ab≥92 2( a b2 ) 2=2 52 .当且仅当a =b时取等号.作为上题的推广,我们自然会想到问题1 :已知x >0 ,y >0 ,且x y =1 ,求函数f1(x ,y) =(x 1x) 3 ( y 1y) 3的最小值.对于问题1 ,我们同样可以如下求解:由题设条件可求得0 相似文献   

5.
<正>基本不等式包含两个不等式:(1)若a,b∈R,则a2+b2≥2ab(当且仅当a=b时取"="号).(2)a,b为正实数,则槡(ab)(1/2)≤a+b2(当且仅当a=b时取"="号).但是,在平时的教学中,发现学生不会灵活运用这些不等式.其实,只要我们合理利用它的检验功能,在解题过程中必然能发现自己所犯的错误.  相似文献   

6.
文 [1]的定理 1,2分别为 :定理 1 设 a≠ - 1,b≠ - 1,则 11+ a+11+ b=1成立的充要条件是 ab=1.定理 2 设 a≠ - 1,b≠ - 1,则 a1+ a+b1+ b=1成立的充要条件是 ab=1.我们可将定理 1,2推广为 :定理 3 设 xy≠ 0 ,则 ax+ by=1成立的充要条件是 (x- a) (y- b) =ab(证明略 ) .把定理 3中的 a,b,x,y分别换成 1,1,1+ 1+ b,则得定理 1;把定理 3中的 x,y分别换成 1+ a,1+ b,则得定理 2 .用定理 3解某些最值题或证明某些不等式是比较方便的 ,下面举例说明 .1 求最值例 1 已知 x,y∈ (0 ,+∞ )且 2 x+ y=4,求 1x+ 1y的最小值 .(文 [2 ]例 2 )解 …  相似文献   

7.
在数学竞赛中 ,我们常碰到根据条件确定代数式取值范围的问题 .解这类问题 ,除了运用一元二次方程、不等式等方面的知识 ,还要用到一些解题技巧 ,现结合一道竞赛题的多种解法 ,谈谈求解此类问题的一些常用的数学思想方法 .题目 已知实数 a,b满足 a2 + ab+ b2 =1 ,且 t=ab- a2 - b2 ,那么 t的取值范围是.( 2 0 0 1年全国初中数学竞赛题第 1 2题 )1 利用二元代换解题分析 1 利用二元代换将已知条件转化为二元二次齐次方程 ,再设法运用不等式的有关知识求取值范围 .解法 1 设 a=x+ y,b=x- y,则由已知得 ( x+ y) 2 + ( x+ y) ( x- y) + ( x-…  相似文献   

8.
不等式求最值,是高中的一个重点,也是一个难点.本文推出一个简单的不等式,其结构由双曲线方程而得出,故简称双曲线形不等式.定理:已知a,b≠0,且有x2/a2-y2/b2=1,則有a2-b2≤(x-y)2,当且仅当b2 x=a2 y时取等号.证明:(a2-b2)·(x2/a2-y2/b2)=x2+y2-(b2 x2/a2+a2 y2/b2)≤x2+y2-2bx/a·ay/b=x2+y2-2xy=(x-y)2,  相似文献   

9.
最近,笔者在研究lnx的性质偶然获得了lnx的一个上界估计,本文将证明这个不等式并给出它的一个应用.定理lnx≤2x-2(x2+1槡)(x>0),当且仅当x=2不等式取等号.证明设f(x)=lnx-2x+2(x2+1槡)(x>0),则f’(x)=1x-2+槡2x x2+槡1,  相似文献   

10.
《数学通报》2020年9期数学问题2562给出了不等式:已知a,b,c>0满足a+b+c=3,则1-ab 1+ab+1-bc 1+bc+1-ca 1+ca≥0(1).不等式结构对称,值得关注.为此,本文拟对不等式(1)的证明方法、变式、推广等方面作一探究.为了表述方便,由∑n k=1 x k y k·∑n k=1 x ky k=∑n k=1 x k y k 2·∑n k=1 x ky k 2≥∑n k=1 x k 2,可得柯西不等式的一个变式:引理设x 1,x 2,…,x n>0,y 1,y 2,…,y n>0,则有∑n k=1 x k y k≥(∑n k=1 x k)2∑n k=1 x ky k(2),等号当且仅当y 1=y 2=…=y n时成立.  相似文献   

11.
(1 )首先从几个简单的特例来观察 ,分别令 (a ,b) =(2 ,2 ) ,(2 ,3 ) ,32 ,2 ,(3 ,4) ,得出 a2b-1 +b2a-1 之值分别为 8,1 1 ,414 ,1 1 .因此猜测当a =2 ,b=2时 ,a2b -1 +b2a -1 =8可能是最小值 . (2 )由不等式x2 +y2 ≥ 2xy,或x +y≥2xy(x≥ 0 ,y≥ 0 )可得当a >1 ,且b>1时 ,a2b-1 +b2a-1 ≥ 2 a2b-1 · b2a-1 =2 aa-1bb-1 .( )又任一正实数x ,因为x2 -4x +4=(x-2 ) 2 ≥ 0 ,所以x2 ≥ 4(x -1 ) ,即得x ≥ 2 x-1 ,也就是 xx -1 ≥ 2恒成立 .当且仅当x =2时等号成立 ,所以由 ( )式可得 a2b-1 +b2a-1 ≥ 2· 2 ·2 =8,而且仅当a =b=2时 ,a2b…  相似文献   

12.
基本不等式(a+b2 ≥ ab)成立的前提条件是a>0,b>0,常用变形式有(a+b≥2ab和ab≤(a+b2 )2),取等号的条件是当且仅当a=b.在求解有关代数式或函数的最小值问题时,若能灵活运用基本不等式及其变式,往往可获得巧思妙解.  相似文献   

13.
略谈一个不等式的应用   总被引:1,自引:0,他引:1  
设 x,y为正实数 ,则由均值不等式得(x y) 3=(12 x 12 x y) 3≥ (3·314x2 y) 3=2 74x2 y.∴ (x y) 3 ≥ 2 74x2 y(* ) ,当且仅当 y=12 x时不等式取等号 .不等式 (* )形式简单 ,但在不等式证明中往往有独到的作用 ,下面举例说明之 .例 1 已知 a,b,c∈R .求证 :(a 1 ) 3b (b 1 ) 3c (c 1 ) 3a ≥ 814.(《中等数学》2 0 0 0年第 4期数学奥林匹克问题 91 )证明 由 (* )式得(a 1 ) 3≥ 2 74a,(b 1 ) 3≥ 2 74b,(c 1 ) 3≥ 2 74c,∴ (a 1 ) 3b (b 1 ) 3c (c 1 ) 3a ≥ 2 74(ab bc ca)≥ 2 74· 3·3ab· bc· ca=814.例 2 已知实数 a>1 ,b…  相似文献   

14.
宋庆老师在文[1]末提出了四个不等式猜想,其中猜想1如下: 猜想 若a,b,c是正实数,且满足abc=1,则a2/a+2+b2/b+2+c2/c+2≥1. 文[2]运用均值不等式的变式x2/y≥2x -y(x>0,y>0,当且仅当x=y时等号成立)证明了这个不等式猜想及如下一般性推广: 推广:若a,b,c,λ,μ是正实数,且满足abc=1,则a2/λa+μ+b2/λb+μ+c2/λc+μ≥3/λ+μ.  相似文献   

15.
例 1.已知 a2 b2 =6 ab且 a>b>0 ,则 a ba- b=。 (2 0 0 1年北京市中学生数学竞赛初二决赛题 )解 :设 a=x y,b=x- y,则将其代入 a2 b2 =6 ab中 ,得 (x y) 2 (x- y) 2 =6 (x y) (x- y)展开括号 ,化简整理得 4 x2 =8y2。而 a>b>0 ,∴ x>y>0 ,∴ x2y2 =2 ,∴ xy=2 ,另 a b=2 x,a- b=2 y,因此 a ba- b=2 x2 y=xy=2。二、求最值范围例 2 .已知实数 a、b满足 a2 ab b2 =1,且 t=ab- a2 - b2 ,那么 t的取值范围是。 (2 0 0 1年 TI杯全国初中数学竞赛 A卷试题 )解 :设 a=x y,b==x- y,代入已知式得(x y) 2 (x y) (x- y) (x- y…  相似文献   

16.
均值不等式是指课本中的不等式:①若a、b∈R,则a2 b≥ab;②若a、b、c∈R ,则a 3b c≥3abc.那么,在运用它们求最值时,必须满足“一正、二定、三相等”这三个基本条件,但在具体的问题中,这些条件往往不全满足,这时,就必须对式子作一定的恒等变形,使它同时满足这三个条件,现将恒等变形的常见方法与技巧归纳如下:一、拆项法【例1】若x>0,求函数y=x2 2x 1x4的最小值.解:∵x>0且x2 2x 1x4=x2 1x6=x2 8x 8x,∴y=x2 8x 8x≥33x2·8x·8x=12.故当且仅当x2=8x,即x=2时,ymin=12.二、添项减项法【例2】已知a≥b>0,求y=a (2a4-b)b的最小值.解:∵a≥b>2b>…  相似文献   

17.
正基本不等式:1/2(ab)≤(a+b)/2(其中a≥0,b≥0)当且仅当a=b时等号成立,当1/2(ab)=(a+b)/2,此时即1/2(1/2a-1/2b)2=0,可看出a=b.a=b一方面可看作不等式成立的特殊情况,另一方面也可看作恒等式成立的条件.基本不等式等号成立的条件有两个:①两数非负,②两数相等,这就说明基本不等式等号成立对条件有着较强的要求.反过来如果基本  相似文献   

18.
如果a,bR,那么a2+b2≥2ab(当且仅当a=b时取“=”号).该结论利用作差法极易证明.下面给出其推论及应用.推论1如果a,b是正数,那么a+b2≥ab√(当且仅当a=b时取“=”号).这个定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.其应用极其广泛,常用于求最值、比较大小、求取值范围和证明不等式等.例1若实数a,b满足a+b=2,则3a+3b的最小值是A.18B.6C.23√D.234√解3a+3b≥23a·3b√=23a+b√=6(当且仅当a=b=1时取“=”号).即3a+3b的最小值为6.选B.推论2如果a,bR,那么a2+b2≥2|ab|(当且仅当|a|=|b|时取“=”号).证明∵a2+b2=…  相似文献   

19.
众所周知,绝对值有如下几条简单的性质:(1)若x是小于1的正数,则a≥xa(当且仅当a=0时取等号);(2)a=-a;(3)a+b+c≥a+b+c.本文利用上述几条性质,通过添加系数,简洁求解两道二元函数的最小值,供参考.例1设x和y是任意实数,求表达式2x-y-1+x+y+y的最小值.这是2006年莫斯科大学数学力学系入学考试数学试卷的一道压轴题,文[1]在文末征求简便解法,下面给出一种简便方法.  相似文献   

20.
现将基本不等式a2 +b2 ≥ 2ab推广如下 :定理 若x、y、a、b均为正数 ,则有xax+y+ ybx+y ≥ (x+ y)axby,( )当且仅当a=b时等号成立 .证明 由加权不等式得xax+yx+ y+ ybx+yx+ y≥ (ax+y) xx+y· (bx+y) yx+y,即xax+y+ ybx+y ≥ (x+y)axby,当且仅当ax+y =bx+y,即a=b时等号成立 .( )式可变形为ax+yby ≥ x+ yx ax - yxbx,( )利用上述变形 ( )式 ,来证明某些分式不等式 ,能起到化繁为简 ,化难为易之功效 .现举例说明如下 :例 1  (《数学通报》问题 871)设n∈N ,α、β∈(0 ,π2 ) ,求证 :sinn+2 αcosnβ + cosn+2 αsinnβ ≥ 1.证明 由 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号