首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
1.问题背景 文[1]及文[2]讨论了⊙C1:x2+y2+D1x+E1y+F1=0及⊙C2:x2+y2+D2x+E2y+F2=0无公共点时,方程x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+ F2)=0的意义,但均没有指明方程表示何种曲线. 本文试图通过对方程x2+ y2+ Dx+Ey+F+λ(Ax+By+C)=0及x2+ y2+ D1x+E1y+F1+λ(x2+ y2+ D2x+E2y+ F2)=0的分析,从而阐明:当直线l与⊙M及⊙C1与⊙C2相交(以下简称“相交圆系”)时,上述方程一定表示圆;当直线l与⊙M及⊙C1与⊙C2不相交(以下简称“非相交圆系”)时,上述方程可能表示何种曲线.  相似文献   

2.
对于有些解析几何题,正面思考或按常规方法求解较难时,若能利用圆锥曲线系,巧设未知数,往往能起到事半功倍的效果,下举例说明.一、得用共交点的圆锥曲线系解题一般地过圆锥曲线C1:f(x,y)=0与圆锥曲线C2:g(x,y)=0的交点的圆锥曲线系方程都可以表示成:f(x,y)+λg(x,y)=0(λ≠-1)(不包括圆锥曲线C2),如过圆C1:x2+y2+D1x+E1y+F=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的圆系方程为:x2+y2+D1x+E1y+F+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).例1已知圆C1:x2+y2+3x+4y+3=0,圆C2:x2+y2+4x+5y-1=0,求过已知两圆的交点,且过原点的圆的方程.解由已知不妨设过已知两圆的交点圆的方程为:x2+y2+3x+4y+3+λ(x2+y2+4x+5y-1)=0(λ≠-1).又圆过原点,将(0,0)代入圆方程可解得λ=3,从而所求的方程为:4x2+4y2+15x+19y=0.  相似文献   

3.
朱传美 《新高考》2011,(Z1):83-84
一般地,具有某种共同属性的直线的集合,称为直线系.直线系的方程中除含坐标变量x,y以外,还有可以根据具体条件取不同值的变量,称为参变量,简称参数.常见的5种直线系方程如下:①过点P(x0,y0)的直线系方程为y-y0=k(x-x0)(k为参数);②斜率为k的直线系方程为y=kx+b(b为参数);③与直线Ax+By+C=0平行的直线系方程为Ax+By+λ=0(λ为参数);④与  相似文献   

4.
下面先介绍一个结论:直线l的方程为Ax By C=0(A、B不同时为零)(1)若M1(x1,y1)、M2(x2,y2)为直线l异侧的任意两点,则(Ax1 By1 C)(Ax2 By2 C)<0.(2)若M1(x1,y1)、M2(x2,y2)为直线l同侧的任意两点则(Ax1 By1 C)(Ax2 By2 C)>0.证明略.应用举例:例1若点A(1,3)和B(-4,-2)在直线2x y m=0的两侧,求m的取值范围.解设f(x,y)=2x y m.∵A(1,3)和B(-4,-2)在直线2x y m=0的两侧,∴f(1,3).f(-4,-2)<0,∴(2×1 3 m)[2×(-4) (-2) m]<0,∴-5相似文献   

5.
在解析几何中,涉及到求过两圆交点的圆方程,求过一直线和一圆的交点的圆方程时,设圆系方程来解是一个非常快捷的一个方法,但没有给出圆系方程一定表示一个圆的证明,本文拟补出这个证明.(I)如果直线1:Ax By C=0与圆C:x~2 y~2 Dx Ey F=0相交,那么过两交点的圆可表示为x~2 y~2 Dx Ey F十λ(Ax By C)=0 (1)(λ∈R)(1)圆过交点的证明略去(2)下面证明方程(1)一定是一个圆方程.证明:(1)经过整理可改写为x~2 y~2 (D λA)x (E λB)y F λC=0,证明方程(1)表示  相似文献   

6.
[定理1] 设曲线a:F(x,y)=0关于直线l:Ax+By+C=0的对称曲线是a’,则a’的方程为 F(x-(2A(Ax+By+C))/(A~2+B~2),y-(2B(Ax+By+C))/(A~2+B~2))=0 (1) 证:设a上任一点P(x_1,y_1)关于l的对称点是M(x,y).则PM的中点((x+x_1)/2,(y+y_1)/2)∈l,且PM⊥l.当A≠0且B≠0时,  相似文献   

7.
直线方程Ax+By+C=0一次项系数的几何意义:向量(A,B)是直线Ax+By+C=0的法线方向.设点p坐标为(x1,y1),直线l的方程是Ax+By+C=0,过点P作直线l的垂线,垂足为D,线段PD的长度是点P到直线l的距离。  相似文献   

8.
在学习了点到直线距离公式后 ,总觉得课本上对这一公式的证明比较繁琐 .其实 ,这一公式还有多种证法 .设P(x0 ,y0) ,L :方程Ax +By+C =0(A ,B不同时为零 )当A =0或B =0时公式显然成立 ,因此 ,这里只证明A ≠ 0 ,B≠ 0时的情况 .已知 :P(x0 ,y0 ) ,L :Ax+By +C =0(A ≠ 0 ,B ≠ 0 ) ,求证 :P到L的距离d =|Ax0 +By0 +C|A2 +B2 .证法一 :过P点作L的垂线交L于Q(x1 ,y1 ) ,则kPQ =BA∴ x1 -x0y1 -y0=AB ①∵Ax1 +By1 +C =0 ,∴将其变形为A(x1 -x0 ) +B(y1 -y0 )=-(Ax0 +By0 +C) ②联立①②得 :x1 -x0 =-A(Ax0 +By0 +C)A2 +…  相似文献   

9.
王峰晨 《数学教学通讯》2007,(3):63-64,F0003
知识:二元一次不等式Ax By C>0(<0)在平面直角坐标系中表示直线Ax By C=0在某一侧面所有点组成的平面区域.方法:由于在直线Ax By C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax By C所得实数的符号都相同,所以只需在此直线的某一侧取某一个特殊点(x0,y0),从Ax0 By0 C的正负即可判断Ax By C>0(<0)表示直线哪一侧的平面区域.我们可以用二元一次不等式表示平面区域的方法来分析圆,椭圆,抛物线,双曲线把平面分成的平面区域,得到如下结论.结论1:对于圆x2 y2=r2及平面内任一点P(x0,y0),把点P(x0,y0)代入x2 y2,当x02 y02=r2时,点P(x0,y0)…  相似文献   

10.
<正> 二次曲线F(x,y)=0上所有点到直线Ax+By+C=0的距离的最小值称为二次曲线F(x,y)=0与直线Ax+By+C=0的距离。 求二次曲线F(x,y)=0与直线Ax+By+C=0间距离实质上是求点到直线的距离问题与极值问题的综合。  相似文献   

11.
设空间直线过定点(x。,y。,z o),其方向向量V={l,m、n}, fx=x 0+It -则{y:y。+mt (t为参数)称为直线的参数式方程。 Iz=z o+nt本文将探讨直线参数式方程的若干应用。 (一)求 交 点 fx=x o I-It把直线方程2y:y。+mt(t为参数)代入曲面方程f(x,y、z)=o,得f相似文献   

12.
设l_1:Ax+By+c=0,l_2:Bx-Ay+d=0,则以l_1为x″轴,l_2为y″轴的坐标变换公式是: x″=Bx-Ay+d/A~2+B~2,或y″=Ax+By+c/(A~2+B~2)~(1/2)x=Ay″+Bx″+c/(A~2+B~2)-(A c/(A~2+B~2)+B d/(A~2+B~2)+c)/(A~2+B~2)~(1/2),y=By″-Ax″+d/(A~2+B~2)~(1/2)-(B c/(A~2+B~2)-A d/(A~2+B~2)+d)/(A~2+B~2)~(1/2)便于记忆,设f(x,y)=Ax+By+c/(A~2+B~2)~(1/2),g(x,y)=Bx+Ay+d/(A~2+B~2)~(1/2),则坐标变换公式是:x″=y(x,y),或y″=f(x,y)  相似文献   

13.
命题 已知直线l:Ac+By+C=0,点P1(x1,y1),P2(x2,y2),(1)若P1、P2在l的两侧,则(Ax1+By1+C)(Ax2+By2+C)&;lt;0;(2)若P1、P2在l的同侧,则(Ax1+By1+C)(4K+By2+C)&;gt;0。  相似文献   

14.
现行全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)习题7.2第15题是这样的: 设点P(x0,y0)在直线Ax+By+C=0上,求证这条直线的方程可以写成A(x-x0)+B(y-y0)=0. 这个结论告诉我们:过点P(x0,y0)的直线系可  相似文献   

15.
本文介绍直线方程的一种/另类0求法及解题中的广泛应用.如果P(x1,y1),Q(x2,y2)两点坐标满足:Ax1+By 1+C=0,A x 2+By 2+C=0,说明P(x1,y1),Q(x2,y2)两点都在直线A x+By+C=0上,因为两点确定一条直线,所以直线PQ的方程为:Ax+By+C=0,这给出了求直线方程的一种新方法,应用这种方法,能使许多棘手的解析几何问题得到简捷地解决,下面举例说明.例1过点M(4,2)作x轴的平行线被抛物线C:x2=2py(p>0)截得的弦长为4 2.  相似文献   

16.
陈题新解     
新教材第二册 (上 )解析几何部分增添了“简单的线性规划” ,教材首先介绍了二元一次不等式表示平面区域 ,即平面直角坐标系中不等式Ax+By +C>0表示直线Ax+By+C =0某一侧所有点组成的区域 ;不等式Ax+By+C≥ 0所表示的平面区域还应包括边界 .因此 ,位于直线Ax+By +C =0同侧的点坐标 (x ,y)使得Ax +By+C同号 ,异侧的点坐标 (x ,y)使得Ax+By+C异号 .利用这个知识点可以解决一类典型的解析几何题目 ,下面仅举几例略谈笔者的体会 .例 1 已知直线l经过点P(2 ,- 1)且与以A(-3,4 )、B(3,2 )为端点的线段相交 ,求直线l斜率的取值范围 .分析…  相似文献   

17.
1 问题的提出很多的解析几何教学用书上都有下面的结论: 已知两圆C_: x~2+y~2+D_(1x)+E_(1y)+F_1=0,C_2: x~2+y~2+D_(2x)+E_(2y)+F_2=0与直线l:(D_1-D_2)x+(E_1-E_2)_y+(F_1-F_2)=0. (1) 若圆C_1与圆C_2相切,则直线l是过公切点  相似文献   

18.
由曲线关于直线的对称变换 定理 曲线f(x,y)=0关于定直线Ax By C=0的对称曲线是:f(x-(2A(Ax By C))/(A~2 B~2), y-(2B(Ax By C))/(A~2 B~2))=0。 (证明略) 由此可知,直线ax by c=0关于直线Ax By C=0的对称直线是:a[x-(2A(Ax By C))/(A~2 B~2)] b[y-(2B(Ax By C))/(A~2 B~2)] C=0,整理之不难得到:  相似文献   

19.
构造是一种重要的数学思想 ,在数学解题教学中 ,教师应注意引导学生依据题目特征 ,类比相关知识 ,通过相关数学模型来促使问题的解决 .本文利用直线与圆有关常用数学模型求解一类数学题 ,供参考 .1 利用点到直线的距离公式解题设 A(x0 ,y0 ) ,直线 l:Ax + By+ C=0 ,则 A到 l的距离 d=| Ax0 + By0 + C|A2 + B2 .例 1 已知实数 a,b满足 a+ b=1.求证 :(a-3) 2 + (b+ 4 ) 2 ≥ 2 .图 1证明 不等式左端可视为点 P(a,b)到点 Q(3,- 4)的距离的平方 ,而点 P(a,b)可看作直线 l:x+ y=1上的任意一点 ,于是问题转化为点 P在直线l上什么位置时线…  相似文献   

20.
一、点关于已知点或已知直线的对称点问题1.若点P(x,y)关于点(a,b)的对称点为P'(x',y'),则由中点坐标公式得x'=2a-x,y'=2b-y2.若点P(x,y)关于直线L:Ax+By+C=0的对称点为P'(x',y'),则x'=x-2AA2+B2(Ax+By+C),y'=y-2BA2+B2(Ax+By+C)证明∵PP'⊥L,PP'的中点在直线L上,∴Ax'+By'=-Ax-By-2C,y'-yx'-x(-AB)=-1(B≠0)解此方程组便可得前面的结论.三种特例:(1)点P(x,y)关于x轴和y轴的对称点分别为(x,-y)和(-x,y);(2)点P(x,y)关于直线x=a和y=a的对称点分别为(2a-x,y)和(x,2a-y);(3)点P(x,y)关于直线y=x和y=-x的对称点分别为(y,x)和(-y,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号