首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The aims of this study were to examine the use of the critical velocity test as a means of predicting 2000-m rowing ergometer performance in female collegiate rowers, and to study the relationship of selected physiological variables on performance times. Thirty-five female collegiate rowers (mean ± s: age 19.3 ± 1.3 years; height 1.70 ± 0.06 m; weight 69.5 ± 7.2 kg) volunteered to participate in the study. Rowers were divided into two categories based on rowing experience: varsity (more than 1 year collegiate experience) and novice (less than 1 year collegiate experience). All rowers performed two continuous graded maximal oxygen consumption tests (familiarization and baseline) to establish maximal oxygen uptake ([Vdot]O2max), peak power output, and power output at ventilatory threshold. Rowers then completed a critical velocity test, consisting of four time-trials at various distances (400 m, 600 m, 800 m, and 1000 m) on two separate days, with 15 min rest between trials. Following the critical velocity test, rowers completed a 2000-m time-trial. Absolute [Vdot]O2max was the strongest predictor of 2000-m performance (r = 0.923) in varsity rowers, with significant correlations also observed for peak power output and critical velocity (r = 0.866 and r = 0.856, respectively). In contrast, critical velocity was the strongest predictor of 2000-m performance in novice rowers (r = 0.733), explaining 54% of the variability in performance. These findings suggest the critical velocity test may be more appropriate for evaluating performance in novice rowers.  相似文献   

2.
The aim of this study was to establish the relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m time-trial on a Concept II Model B rowing ergometer. The participants were 13 male club standard oarsmen. Their mean (+/- s) age, body mass and height were 19.9+/-0.6 years, 73.1+/-6.6 kg and 180.5+/-4.6 cm respectively. The participants were tested on the rowing ergometer to determine their maximal oxygen uptake (VO2max), rowing economy, predicted velocity at VO2max, velocity and VO2 at the lactate threshold, and their velocity and VO2 at a blood lactate concentration of 4 mmol x l(-1). Percent body fat was estimated using the skinfold method. The velocity for the 2000 m performance test and the predicted velocities at the lactate threshold, at a blood lactate concentration of 4 mmol x l(-1) and at VO2max were 4.7+/-0.2, 3.9+/-0.2, 4.2+/-0.2 and 4.6+/-0.2 m x s(-1) respectively. A repeated-measures analysis of variance showed that the three predicted velocities were all significantly different from each other (P<0.05). The VO2max and lean body mass showed the highest correlation with the velocity for the 2000 m time-trial (r = 0.85). A stepwise multiple regression showed that VO2max was the best single predictor of the velocity for the 2000 m time-trial; a model incorporating VO2max explained 72% of the variability in 2000 m rowing performance. Our results suggest that rowers should devote time to the improvement of VO2max and lean body mass.  相似文献   

3.
4.
5.
In 19 elite schoolboy rowers, the relationships between anthropometric characteristics, metabolic parameters, strength variables and 2000-m rowing ergometer performance time were analysed to test the hypothesis that a combination of these variables would predict performance better than either individual variables or one category of variables. Anthropometric characteristics, maximal oxygen uptake (VO2max), accumulated oxygen deficit, net efficiency, leg strength and 2000-m rowing ergometer time were measured. Body mass, VO2max and knee extension correlated with 2000-m performance time (r= -0.41, -0.43 and -0.40, respectively; P< 0.05), while net efficiency and accumulated oxygen deficit did not. Multiple-regression analyses indicated that the prediction model using anthropometric variables alone best predicts performance (R = 0.82), followed by the equation comprising body mass, VO2max and skinfolds (R = 0.80). Although the regression equations increased the predictive power from that obtained using single variables, the hypothesis that a prediction model consisting of variables from different physiological categories would predict performance better than variables from one physiological category was not supported.  相似文献   

6.
The aim of this study was to predict indoor rowing performance in 12 competitive female rowers (age 21.3 +/- 3.6 years, height 1.68 +/- 0.54 m, body mass 67.1 +/- 11.7 kg; mean +/- s) using a 30 s rowing sprint, maximal oxygen uptake and the blood lactate response to submaximal rowing. Blood lactate and oxygen uptake (VO2) were measured during a discontinuous graded exercise test on a Concept II rowing ergometer incremented by 25 W for each 2 min stage; the highest VO2 measured during the test was recorded as VO2max (mean = 3.18 +/- 0.35 l.min-1). Peak power (380 +/- 63.2 W) and mean power (368 +/- 60.0 W) were determined using a modified Wingate test protocol on the Concept II rowing ergometer. Rowing performance was based on the results of the 2000 m indoor rowing championship in 1997 (466.8 +/- 12.3 s). Laboratory testing was performed within 3 weeks of the rowing championship. Submitting mean power (Power), the highest and lowest five consecutive sprint power outputs (Maximal and Minimal), percent fatigue in the sprint test (Fatigue), VO2max (l.min-1), VO2max (ml.kg-1.min-1), VO2 at the lactate threshold, power at the lactate threshold (W), maximal lactate concentration, lactate threshold (percent VO2max) and VEmax (l.min-1) to a stepwise multiple regression analysis produced the following model to predict 2000 m rowing performance: Time2000 = -0.163 (Power) -14.213.(VO2max l.min-1) +0.738.(Fatigue) 7.259 (R2 = 0.96, standard error = 2.89). These results indicate that, in the women studied, 75.7% of the variation in 2000 m indoor rowing performance time was predicted by peak power in a rowing Wingate test, while VO2max and fatigue during the Wingate test explained an additional 12.1% and 8.2% of the variance, respectively.  相似文献   

7.
In 19 elite schoolboy rowers, the relationships between anthropometric characteristics, metabolic parameters, strength variables and 2000-m rowing ergometer performance time were analysed to test the hypothesis that a combination of these variables would predict performance better than either individual variables or one category of variables. Anthropometric characteristics, maximal oxygen uptake (V O 2m ax ), accumulated oxygen deficit, net efficiency, leg strength and 2000-m rowing ergometer time were measured. Body mass, V O 2max and knee extension correlated with 2000-m performance time (r = -0.41, -0.43 and-0.40, respectively; P 0.05), while net efficiency and accumulated oxygen deficit did not. Multiple-regression analyses indicated that the prediction model using anthropometric variables alone best predicts performance (R = 0.82), followed by the equation comprising body mass, V O 2max and skinfolds (R = 0.80). Although the regression equations increased the predictive power from that obtained using single variables, the hypothesis that a prediction model consisting of variables from different physiological categories would predict performance better than variables from one physiological category was not supported.  相似文献   

8.
Rowers need to combine high sprint and endurance capacities. Muscle morphology largely explains muscle power generating capacity, however, little is known on how muscle morphology relates to rowing performance measures. The aim was to determine how muscle morphology of the vastus lateralis relates to rowing ergometer performance, sprint and endurance capacity of Olympic rowers. Eighteen rowers (12♂, 6♀, who competed at 2016 Olympics) performed an incremental rowing test to obtain maximal oxygen consumption, reflecting endurance capacity. Sprint capacity was assessed by Wingate cycling peak power. M. vastus lateralis morphology (volume, physiological cross-sectional area, fascicle length and pennation angle) was derived from 3-dimensional ultrasound imaging. Thirteen rowers (7♂, 6♀) completed a 2000-m rowing ergometer time trial. Muscle volume largely explained variance in 2000-m rowing performance (R2 = 0.85), maximal oxygen consumption (R2 = 0.65), and Wingate peak power (R2 = 0.82). When normalized for differences in body size, maximal oxygen consumption and Wingate peak power were negatively related in males (r = ?0.94). Fascicle length, not physiological cross-sectional area, attributed to normalized peak power. In conclusion, vastus lateralis volume largely explains variance in rowing ergometer performance, sprint and endurance capacity. For a high normalized sprint capacity, athletes may benefit from long fascicles rather than a large physiological cross-sectional area.  相似文献   

9.
The aim of this study was to predict indoor rowing performance in 12 competitive female rowers (age 21.3 - 3.6 years, height 1.68 - 0.54 m, body mass 67.1 - 11.7 kg; mean - s ) using a 30 s rowing sprint, maximal oxygen uptake and the blood lactate response to submaximal rowing. Blood lactate and oxygen uptake ( V O 2 ) were measured during a discontinuous graded exercise test on a Concept II rowing ergometer incremented by 25 W for each 2 min stage; the highest V O 2 measured during the test was recorded as V O 2max (mean = 3.18 - 0.35 l· min -1 ). Peak power (380 - 63.2 W) and mean power (368 - 60.0 W) were determined using a modified Wingate test protocol on the Concept II rowing ergometer. Rowing performance was based on the results of the 2000 m indoor rowing championship in 1997 (466.8 - 12.3 s). Laboratory testing was performed within 3 weeks of the rowing championship. Submitting mean power (Power), the highest and lowest five consecutive sprint power outputs (Maximal and Minimal), percent fatigue in the sprint test (Fatigue), V O 2max (l· min -1 ), V O 2max (ml·kg -1 ·min -1 ), V O 2 at the lactate threshold, power at the lactate threshold (W), maximal lactate concentration, lactate threshold (percent V O 2max ) and V E max (l·min -1 ) to a stepwise multiple regression analysis produced the following model to predict 2000 m rowing performance: Time 2000 =- 0.163 (Power)14.213 ·( V O 2max l· min -1 ) + 0.738· (Fatigue) + 567.259 ( R 2 = 0.96, standard error = 2.89). These results indicate that, in the women studied, 75.7% of the variation in 2000 m indoor rowing performance time was predicted by peak power in a rowing Wingate test, while V O 2max and fatigue during the Wingate test explained an additional 12.1% and 8.2% of the variance, respectively.  相似文献   

10.
ABSTRACT

Post-activation potentiation likely acutely improves power-based performance; however, few studies have demonstrated improved endurance performance. Forty collegiate female rowers performed isometric potentiating (ISO), dynamic potentiating (DYN) and control (CON) warm-up protocols on a rowing ergometer, followed by a three-minute all-out test to evaluate their total distance, peak power, mean power, critical power, anaerobic working capacity (W’) and stroke rate. Fifteen-second splits were also analysed. ISO consisted of 5 × 5-second static muscle actions with the ergometer handle rendered immovable with a nylon strap, while DYN consisted of 2 × 10-second all-out rowing bouts, separated by a 2-minute rest interval. The participants were divided into high and low experience groups by median experience level (3.75 years) for statistical analysis. Significant differences (DYN > CON; p < 0.05) were found for distance (+5.6 m), mean power (+5.9 W) and W’ (+1561.6 J) for more experienced rowers (n = 19) and no differences for less experienced rowers (n = 18). Mean power in DYN was significantly greater than CON and ISO in the 15–30, 30–45, 45–60 and 60–75 second intervals independent of experience level. These results suggest that DYN may benefit experienced female rowers and that these strategies might benefit a greater power output over shorter distances regardless of experience.  相似文献   

11.
The aim of this study was to compare the evolution of oxygen uptake (VO2) in specifically trained runners during running tests based on the 400-, 800-, and 1500-m pacing strategies adopted by elite runners to optimize performance. Final velocity decreased significantly for all three distances, with the slowest velocity in the last 100 m expressed relative to the peak velocity observed in the 400 m (77%), 800 m (88%), and 1500 m (96%). Relative to the previously determined VO2max values, the respective VO 2peak corresponded to 94% (400 m) and 100% (800 and 1500 m). In the last 100 m, a decrease in VO2 was observed in all participants for the 400-m (15.6 ± 6.5%) and 800-m races (9.9 ± 6.3%), whereas a non-systematic decrease (3.6 ± 7.6%) was noted for the 1500 m. The amplitude of this decrease was correlated with the reduction in tidal volume recorded during the last 100 m of each distance (r = 0.85, P < 0.0001) and with maximal blood lactate concentrations after the three races (r = 0.55, P < 0.005). The present data demonstrate that the 800 m is similar to the 400 m in terms of decreases in velocity and VO2.  相似文献   

12.
The effect of anthropometric differences in shank to thigh length ratio upon timing and magnitude of joint power production during the drive phase of the rowing stroke was investigated in 14 elite male rowers. Rowers were tested on the RowPerfect ergometer which was instrumented at the handle and foot stretcher to measure force generation, and a nine segment inverse dynamics model used to calculate the rower's joint and overall power production. Rowers were divided into two groups according to relative shank thigh ratio. Time to half lumbar power generation was significantly earlier in shorter shank rowers (p = 0.028) compared to longer shank rowers, who showed no lumbar power generation during the same period of the drive phase. Rowers with a relatively shorter shank demonstrated earlier lumbar power generation during the drive phase resulting from restricted rotation of the pelvic segment requiring increased lumbar extension in these rowers. Earlier lumbar power generation and extension did not appear to directly affect performance measures of the short shank group, and so can be attributed to a technical adaptation developed to maximise rowing performance.  相似文献   

13.
In rowing, mechanical power output is a key parameter for biophysical analyses and performance monitoring and should therefore be measured accurately. It is common practice to estimate on-water power output as the time average of the dot product of the moment of the handle force relative to the oar pin and the oar angular velocity. In a theoretical analysis we have recently shown that this measure differs from the true power output by an amount that equals the mean of the rower’s mass multiplied by the rower’s center of mass acceleration and the velocity of the boat. In this study we investigated the difference between a rower’s power output calculated using the common proxy and the true power output under different rowing conditions. Nine rowers participated in an on-water experiment consisting of 7 trials in a single scull. Stroke rate, technique and forces applied to the oar were varied. On average, rowers’ power output was underestimated with 12.3% when determined using the common proxy. Variations between rowers and rowing conditions were small (SD = 1.1%) and mostly due to differences in stroke rate. To analyze and monitor rowing performance accurately, a correction of the determination of rowers’ on-water power output is therefore required.  相似文献   

14.
We evaluated (1) the test-retest reliability of the Wingate test conducted on a rowing ergometer, and (2) the sensitivity of this test in determining the differences in performance attained by 12- to 18-year-old rowers. Altogether, 297 male rowers aged 12.0-18.9 years (mean?±?s: 14.8?±?1.7) completed a maximal 30-s test on a rowing ergometer, and 80 rowers representing all age groups were retested after 5-7 days. No change was evident in participants' performance in terms of mean power output (P?=?0.726; Cohen's d?=?0.04), maximal power output (P?=?0.567; Cohen's d?=?0.06), and minimum power output (P?=?0.318; Cohen's d?=?0.11) in the second test. The intra-class correlation coefficients were high (≥0.973) and coefficients of variation were low (≤7.3%). A series of analyses of variance were used to compare the performances among 12- to 18-year-old rowers, and age-related increases in performance were evident (P?相似文献   

15.
Coaches, sport scientists and researchers assess rowing performance on-water and on a variety of ergometers. Ergometers are frequently used because of the easier assessment environment. However, there is limited information on the ability of rowers to reproduce mean power or time-trial time when using different rowing ergometers (Concept II and RowPerfect) or completing tests over different distances (500 m versus 2000 m races). To test the efficacy of an intervention on a rower's ability to produce power, or to monitor that ability, it is essential to determine a reliable rowing performance test. The per cent standard error of measurement in performance (assessed by mean power and time-trial time) of fifteen national standard rowers was determined for five repeated 500 m and two repeated 2000 m races on a Concept II and RowPerfect ergometer. The per cent standard error of measurement (% SEM) in mean power between 5x500m races, regardless of gender, was 2.8% (95% confidence limits (CL)=2.3 to 3.4%) for the Concept II ergometer and 3.3% (95% CL=2.5 to 3.9%) for the RowPerfect ergometer (n = 15). Over 2000 m the per cent standard error of measurement in mean power was 1.3% (95% CL 0.9 to 2.9%) for the Concept II ergometer and 3.3% (95% CL 2.2 to 7.0%) for the RowPerfect ergometer The results highlight an increase in per cent standard error of the mean during performance races of less than 2000m on the Concept II ergometer, and performance races on the RowPerfect ergometer compared with the Concept II ergometer over 500 m and 2000 m. The most appropriate protocol for testing the influence of an intervention on the ability of a rower to produce power would be 2000 m races on a Concept II ergometer.  相似文献   

16.
High retest reliability is desirable in tests used to monitor athletic performance, but the reliability of many popular tests has not been established. The aim of this study was to determine the reliability of performance of a 2000-m time-trial lasting approximately 7 min performed on a Concept II rowing ergometer. Eight well-trained rowers (peak oxygen uptake 61+/-5 ml x kg(-1) x min(-1); mean +/- standard deviation) performed the time-trials on three occasions at 3-day intervals. Mean power (313+/-38 W in trial 1) improved by 2.3% (95% confidence interval 0.1 to 4.5%) in trial 2 and by a further 0.9% (-1.4 to 3.3%) in trial 3. The variability of performance for individual rowers expressed as a coefficient of variation for mean power was 2.0% (1.3 to 3.1%), and the retest correlation was 0.96 (0.87 to 0.99). Variability and changes in performance expressed as time to complete the test were approximately one-third those of mean power, apparently because simulated velocity is proportional to the cube root of power on this ergometer. Such high reliability makes this combination of ergometer, athlete and test protocol very suitable for monitoring rowing performance and for investigating factors that affect performance in short, high-intensity endurance events.  相似文献   

17.
ABSTRACT

Exercise-induced arterial hypoxemia (EIAH) has been consistently reported in elite endurance athletes. This study examined the effects of an inspiratory muscle training protocol (IMT) on resting pulmonary function, end-exercise arterial oxygen saturation and performance in hypoxemic rowers. Twenty male and sixteen female well-trained hypoxemic rowers were divided into four groups: IMT-male, control-male, IMT-female and control-female. The IMT groups, additionally to the regular training, performed IMT (30 min/day, 5 times/week, 6 weeks). Before and after training, groups underwent an incremental rowing test, a 2000-m time trial and a 5-min “all-out” race. IMT increased respiratory strength in the IMT-male (135 ± 31 vs. 180 ± 22 cmH2O) and IMT-female (93 ± 19 vs. 142 ± 22 cmH2O) (P < 0.05). The IMT-female group exhibited lower EIAH and improved rowing performance in the 2000-m time trial (487 ± 32 vs. 461 ± 34 sec) and in the 5-min “all-out” test (1,285 ± 28 vs. 1,310 ± 36m) (P < 0.05). IMT protocol improved performance in IMT-male only in the 5-min test (1,651 ± 31 vs. 1,746 ± 37m) (P < 0.05). IMT may be a useful tool for increasing respiratory strength and enhancing performance in hypoxemic rowers, especially for women.

Abbreviations: EIAH: Exercise-induced arterial hypoxemia; IMT: inspiratory muscle training protocol; PaO2: partial pressure of arterial oxygen; SaO2: arterial oxyhemoglobin saturation; VO2max: maximal oxygen consumption; [(A-a)DO2]: alveolar-to-arterial oxygen difference; VA/Q: ventilation-perfusion inequality/mismatching; PImax: maximal inspiratory pressure; BMI: body mass index; BSA: body surface area; FVC: vital capacity; FEV1: forced expiratory volume in 1 sec; VCin: vital capacity; MVV12: maximal voluntary ventilation in 12 sec  相似文献   

18.
Oar force and oar angle data resulting from a 6‐min maximal rowing ergometer test undertaken by novice (n = 9), good (n ‐ 23) and national (n = 9) level male rowers, were used to identify biomechanical performance variables which accurately discriminated between rowers of differing ability levels. The variables included two work capacity measures, mean propulsive power output per kilogram of body mass (W kg‐1) and propulsive work consistency (%), and two skill variables, stroke‐to‐stroke consistency (%) and stroke smoothness (%). Discriminant function analysis indicated the presence of two functions, both of which clearly indicated the importance of mean propulsive power output per kilogram of body mass as a discriminating variable. Function 2 gave greater weight to stroke‐to‐stroke consistency and stroke smoothness than function 1; however, function 1 was the most powerful discriminator. Classification procedures were used to predict the ability level to which a rower most likely belonged and involved defining the ‘distance’ between each rower and each ability level centroid, with the rower being classified into the ‘nearest’ ability level. These procedures indicated that 100% of the elite, 73.9% of the good, 88.9% of the novice and 82.9% of all rowers were correctly classified into their respective skill levels. Stepwise discriminant analysis included the variables in the following order: mean propulsive power output per kilogram of body mass, stroke‐to‐stroke consistency, stroke smoothness and propulsive work consistency (P < 0.001). The results of this study indicate that biomechanical performance variables related to rowing capacity and skill may be identified and used to discriminate accurately between rowers of differing skill levels, and that, of these variables, propulsive work consistency is the least effective discriminator.  相似文献   

19.
The aims of this study were to establish whether anthropometry, muscle strength and endurance accounted for differences between junior and senior elite rowing ergometer performance, and to determine annual development rates for juniors associated with training. Twenty-six junior (8 females, age 18.0 ± 0.3 years and 18 males, age 17.9 ± 0.2 years) and 30 senior (12 females, 23.7 ± 3.0 years and 18 males, 24.0 ± 3.9 years) heavyweight rowers, were assessed anthropometrically, performed a 2000-m ergometer time-trial, and completed various muscular strength and endurance tests. There were no anthropometrical differences between males; however after controlling for body-fat and standing-height, senior females were of greater body-mass (70.5 ± 4.6 kg and 77.2 ± 5.9 kg, P = 0.01) and sitting-height (89.8 ± 2.2 cm and 92.2 ± 6.1 cm, P = 0.04) than juniors. Moderate to very large standardised differences in all strength and endurance tests were observed between juniors and seniors (effect size (ES) range 0.9-1.9). Greater development rates (5.0% to 6.0%) and adjusted 2000-m performance was associated with upper-body strength (males) and endurance (females). In conclusion, after identification of desirable anthropometry, the 2000-m ergometer potential of juniors may be accounted for by upper-body strength and endurance.  相似文献   

20.
This case study reports the results of a 12-year (2005–2016) follow-up study of two Olympic champion rowers. The rowers were prospective athletes at the junior level when the study began, and we monitored their relevant physiological and performance data annually. Our findings indicated that their V?O2max gradually increased up to about 22 years of age and leveled off at a value of approximately 7 l·min?1 with minimal fluctuations thereafter. However, the variables that directly influence the V?O2max changed. There was an age-related decline in maximal heart rate of about 0.5 beats·year?1, while oxygen pulse, which serves as an indirect measure of stroke volume, correspondingly increased by about 1 ml O2·beat?1 per year, allowing the athletes to maintain exceptional V?O2max values. Maximal minute power of the studied rowers, derived each year from their ramp-wise tests, closely resembled the mean power output sustained during the 2000-m all-out tests on a rowing ergometer. A 12-year improvement of 28% and 33% occurred for the mean power output sustained over 2000 and 6000-m on a rowing ergometer, respectively. The findings contribute to the body of knowledge on athletes representing the true elites of their respective sports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号