首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.传统的函数零点存在性定理的考查,如:  相似文献   

2.
<正>我在学习中发现:函数零点所在区间的判断主要是通过零点存在性定理,即如果函数y=f(x)在区间[a,b]上的图像是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,而这个c就是方程f(x)=0的根。但是,零点存在性定理只能判断出存在零点,不能确定零点的个数。  相似文献   

3.
人教A版必修1给出了判断函数零点的定理,即零点存在定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根,这个定理比较抽象,要理解它并能较好地加以应用,应注意从四个方面加以把握。  相似文献   

4.
零点定理是必修1(人教版)的内容,是新教材新增的一个重要定理,有着广泛的应用.什么是零点呢?对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点.零点定理:如果函数在区间[a,b]上的图象是连续不断的一条曲线,且满足f(a).f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c  相似文献   

5.
本文就零值定理在在二次函数中的应用,谈一点我们的看法。零值定理:设f(x)是闭区间[a,b]上的连续函数且在区间两端点的数值f(a)、f(b)异号,那么一定有一点C(a相似文献   

6.
解决函数零点存在问题常使用函数零点存在定理:函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)f(b)<0,则函数y=f(x)在区间(a,b)上有零点.但这个定理的逆命题是不成立的,即函数y=f(x)在开区间(a,b)上有零点,则f(a)f(b)<0不一定成立,所以定理中的条件仅是函数f(x)在(a,b)上有零点的充分条件,而不是充要条件.  相似文献   

7.
普通高中课程标准实验教科书数学必修Ⅰ(A)第88页给出个结论,我们普遍把它称作函数零点存在定理:如果函数y=f(x)在区间①[α,b]上的②图像是连续不断的一条曲线,并且有③f(α)·f(b)<0,那么函数y=f(x)在区间④(α,b)内⑤有零点,即存在c ∈(α,b),使得f(c)=0,⑥这个 c 也就是方程∫(x)=0的根.  相似文献   

8.
一、应"优先"考虑特殊情况 例1 函数f(x)=Msin(ωx ψ)(ω>0)在区间[a,b]上是增函数且f(a)=-M,f(b)=M,则函数g(x)=Mcos(ωx ψ)在区间[a,b]上( ).  相似文献   

9.
一、学生的困惑 学生在课间向笔者提出这样一个问题: 若函数f(x)为定义域D上的单调函数,且存在区间[a,b](∈)D(其中a<b),使得当x∈[a,b]时,f(x)的值域恰为[a,b],则称函数f(x)是D上的正函数,区间[a,b]叫做和谐区间.如果函数g(x)=x2+m是(-∞,0)上的正函数,则实数m的取值范围是_____.  相似文献   

10.
题目:已知a,b是实数,函数f(x)=x2+ax,g(x)=x2+bx,f’(x)和g’(x)是f(x),g’(x)的导函数,若f’(x)g’(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.  相似文献   

11.
<正>一般地,使函数y=f(x)的值为0的实数x称为函数y=f(x)的零点.因此,函数y=f(x)的零点就是方程f(x)=0的实数根.从图象上看,函数y=f(x)的零点就是它的图象与x轴交点的横坐标.一般地,若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线且f(a)·f(b)<0,则函数y=f(x)在区间(a,b)上有零点.我们经常会遇到函数与方程的有关问题,下面我们看这样几个题目.  相似文献   

12.
一、求函数解析式【例1】设y=f(x)为三次函数,且图象关于原点对称,当x=1时,f(x)取得极小值-2,求f(x)的解析式.解:设f(x)=ax3 bx2 cx d(a≠0),由于其关于原点对称,为奇函数.故b=d=0.所以f(x)=ax3 cx,由f′(x)=3ax2 c,且x=1时,f(x)有极小值-2得f′(1)=3a c=0,f(1)=a c=-2,解之,得a=1,c=-3,所以f(x)=x3-3x.二、求函数单调区间与判断函数单调性【例2】求f(x)=x3 3x的单调区间.分析:首先确定f(x)的定义域,再在定义域上根据导函数f′(x)的符号来确定f(x)的单调区间.解:f(x)的定义域为(-∞,0)∪(0, ∞)f′(x)=3x2-3x2=3(x2 1)(x 1)(x-1)x2由于当x<-…  相似文献   

13.
一、函数f(x) =ax bx(a ,b∈R)的性质1.当a =b =0时 ,f(x) =0 (x≠ 0 )是常数函数 ,既是奇函数又是偶函数 ,其图象是x轴 (不包括原点 ) .2 .当b =0 ,a≠ 0时 ,f(x) =ax(x≠ 0 )是一次函数且是奇函数 ,其图象是一条直线 (不包括原点 ) .3.当a =0 ,b≠ 0时 ,f(x) =bx(x≠ 0 )是反比例函数且是奇函数 ,其图象是双曲线 .4 .当a≠ 0 ,b≠ 0时 :(1)当a >0 ,b <0时 ,f(x) =ax bx(x≠ 0 )是奇函数且在区间 (-∞ ,0 )和 (0 , ∞ )上是增函数 .(2 )当a <0 ,b >0时 ,f(x) =ax bx(x≠ 0 )是奇函数且在区间 (-∞ ,0 )和 (0 , ∞ )上是减函数 .(3)当a …  相似文献   

14.
在古典数学分析中,Cauchy中值定理是:若函数f(x)与(?)(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且对任意x∈(a,b)(?)′(x)≠0,则在(a/b)内存在一点C,使得f(b)-f(a)/(?)(b)-(?)(a)=f′(c)/(?)′(c)如果令(?)(x)=x,得  相似文献   

15.
一按段光滑函数的两种定义的比较多数《数学分析》教程是这样定义按段光滑函数的: 定义1如果函数f(x)在区间(a,b)上除可能有有限个第一类不连续点外,处处都连续,则称函数f(x)在(a,b)上按段连续。定义2 如果函数f(x)满足以下条件:1)函数f(x)在区间(a,b)上按段连续;2)导函数f′(x)在区间(a,b)上也按段连续,则称函数f(x)在区间(a,b)上按段光滑。有的《数学分析》教程,如华东师范大学数学系编《数学分析》下册里,又是这样定义按段光滑函数的: 定义3 若f(x)的导函数f′(x)在区间(a,b)上连续,则称f(x)在(a,6)上光滑.但若定义在(a,b)上的函数的导函数,f′(x)在(a,b)上除了至多有限个点外都存在且连续,在这有  相似文献   

16.
导数在函数中扮演着举足轻重的角色,它是研究函数的一个有力工具,最近几年已成为命题者乐此不疲的热点.题目已知函数f(x)=ax3 bx2 cx d(a、b、c、d∈R,且a≠0)是定义在R上的函数,其图象与x轴交于A、B、C三点.若点B的坐标为(2,0),且f(x)在区间[-1,0]和[4,5]上有相同的单调性,在区间[0,2]和[4,5]上的单调性相反.(1)求c的值.(2)f(x)的图象上是否存在一点M(x0,y0),使f(x)在点M处的切线的斜率为3b?若存在,求出点M的坐标;若不存在,请说明理由.(3)求|AC|的范围.解:(1)f′(x)=3ax2 2bx c.由f(x)在区间[-1,0]和[0,2]上有相反的单调性,得x=0必为f…  相似文献   

17.
马欣荣建立了迄今为止广泛的一对反演公式(f,g)-反演,它完全取决于所给的一对函数f,g是否满足函数方程g(a,b)f(x,c)-g(a,c)f(x,b)+g(b,c)f(x,a)=0.本文就f,g为多项式和无穷级数时给出了上述方程的通解.  相似文献   

18.
贵刊2000年第8期刊登了一篇文章《从一道竞赛题谈起》,原文对1999年12月第十四届江苏省初中数学竞赛的一道试题列举了五种解法,并进行初步的推广.笔者认为该题还有一种新的求解途径,并可以进行更一般性的推广.题目 已知a,b,c,d是四个不同的有理数,且(a c)(a d)=1,(b c)(b d)=1,那么(a c)(b c)的值是.解 作函数f(x)=(x c)(x d)-(x-a)(x-b)-1,1其次数低于2.由f(a)=f(b)=0且a≠b可知    f(x)≡0.2从而  f(-c)=0.即   (a c)(b c)=-1.评注1 将构造的函数1展开,有f(x)=(a b c d)x (cd-ab-1),根据恒等式2有a b c d=0,cd-ab=1.    …  相似文献   

19.
<正>由课本定义可知:若函数f(x)在(a,b)上不间断,且f(a)f(b)<0,那么f(x)在(a,b)上存在零点.但这个结论只能判断有零点,不能判断什么时候有唯一零点.因此,我们需要确定在区间(a,b)上什么时候存在唯一零点,再利用二分法求出这个零点.那么,在什么条件下f(x)在(a,b)上只有一个零点?(1)当f(x)为区间(a,b)上的单调函数  相似文献   

20.
我们知道,等式的三个基本性质是:(1)若a=b,则a±c=b±c;(2)若a=b,则ac=bc;(3)若a=b,c≠0,则a/c=b/c.事实上,从函数角度看,我们可以把等式的基本性质推广为:若函数y=f(x)是区间D上的单调函数,且a,b∈ D,则a=b(=)f(a)=f(b).即,对单调函数而言,考查自变量的相等关系,可以转化为考查函数值相等,反之亦然.正是这种转化,体现了等式基本性质的推广价值,构成了部分题目解决过程的关键,下面就其运用举例说明.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号