首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eξ,Dξ分别为随机变量ξ的数学期望与方差.由Dξ=E(ξ-Eξ)2=Eξ2-(Eξ)2≥0,知Eξ2≥(Eξ)2(*),当且仅当ξ可能取的值都相等时取等号. 构造随机变量ξ的分布列,利用(*)式可以巧求下面一类题型的最小值.  相似文献   

2.
Eξ,Dξ分别为随机变量ξ的数学期望与方差.由Dξ=E(-Eξ)2=Eξ2-(Eξ)2≥0,知Eξ2≥(Eξ)2(*),当且仅当ξ可能取的值都相等时取等号.构造随机变量ξ的分布列,利用(*)式解题,方法新颖,运算简便.下面举例说明.一、求最值例1(2005年高中联赛)使关于x的不等式x-槡3+6槡-x≥k有解的实数k的最大值是()  相似文献   

3.
2005年全国高中数学联赛加试题第二题如下:设正数 a、b、c、x、y、z 满足 cy+bz=a;az+cx=b;bx+ay=c,求函数 f(x,y,z)=x~2/(1+x)+y~2/(1+y)+z~2/(1+z)的最小值.本文运用构造法给出一个比较简捷的解法,供大家参考.根据条件不等式及待求分式结构,构造随机变量ξ的分布列如下:  相似文献   

4.
根据方差的定义可以推导如下公式:D(ξ)=E(ξ-E(ξ))2=E(ξ2-2ξE(ξ)+(E(ξ))2)=E(ξ2)-2(E(ξ))2+(E(ξ))2=E(ξ2)-(E(ξ))2.因为D(ξ)≥0,所以E(ξ2)≥(E(ξ))2.在求含多元变量最值的题目中,可以根据题目结构特征,巧妙的构造离散型随机变量的概率分布列,利用E(ξ2)≥(E(ξ))2解决问题.例1已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为.  相似文献   

5.
杜苏 《中学理科》2006,(6):9-11
一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目的要求的)1.已知i是虚数单位,若复数z=cosθ+isinθ(θ∈R)在复平面内对应的点在直线x+2y=0上,则cotθ的值等于().A.2B.-2C.12D.-122.若数列{an}的前n项和Sn=log5(n+4),则数列{an}从第二项起是().A.递增数列B.递减数列C.常数数列D.以上皆不是3.函数y=log12|x|1-x-1的定义域是().A.12,1∪(-∞,0)B.(-∞,1)C.12,1D.0,12∪(1,+∞)4.若随机变量ξ的分布列为:P(ξ=m)=13,P(ξ=n)=a.若Eξ=2,则Dξ的最小值等于().A.0B.2C.4D.无法计算5.已知长方体…  相似文献   

6.
正关于概率的题型一直是高考和数学竞赛的重点内容.本文尝试构造离散型随机变量ξ的概率分布列体现概率在非概率题,如求最值、求值域、证明不等式等方面的应用.离散型随机变量ξ的方差D(ξ)=∑i=1n(ξi-E(ξ))2?pi=Eξ~2-(Eξ)~2≥0,当且仅当ξ服从退化分布时等号成立,即ξ_1=ξ_2=?=ξ_n时,Eξ~2=(Eξ)~2成立.1求最值例1(2013年高考湖南卷(理)第10题)已知a,b,c∈R,  相似文献   

7.
离散型随机变量ξ、分布列、期望Eξ及方差Dξ本属概率统计知识,然而根据Dξ=Eξ~2-(Eξ)~2≥0却可广泛应用于求解不等式问题之中.不等式中经常与"1"密切联系,而离散型随机变量的概率之和也为1,这为我们解相关问题创造了构建分布列的条件,从而能得出绝妙的求解方法.其解题模式为构造随机变量ξ分布列  相似文献   

8.
概率统计是新课程中的热点内容,以概率统 计的观点来研究和处理其它数学分支的问题别 有一番情趣.本文讲解如何构造概率统计模型解 传统赛题,希望对读者有所启示. 1.求最值 例1 已知x,y,z∈R ,且x y x=1. 则的最大值为 . (第11届00年高二"希望杯") 解 构造离散型随机变量ξ, 设其分布列为  相似文献   

9.
2019年高考全国卷Ⅲ第23题(1):设x,y,z∈R,且x+y+z=1,求(x-1)^2+(y+1)^2+(z+1)^2的最小值.若以不等式方式呈现就是:设x,y,z∈R,且x+y+z=1,求证:(x-1)^2+(y+1)^2+(z+1)^2≥4/3.  相似文献   

10.
概率是新课程中的热点内容,在概率教学中,适当说明构造概率模型在解题中的运用,体现概率与其它数学内容之间的紧密联系,对增强学生的学习兴趣,加深学生对概率知识的理解,都是很有裨益的.最值问题是中学数学常见问题,文[1]利用向量简捷巧妙的解决了一类最值问题,本文将另辟蹊径,利用一个概率定理求此类最值,以此展示解决此类问题的概率视角,希望对读者有所启发.定理设离散型随机变量ξ的分布列为P(ξ=xk)=Pk,k=1,2,…,n,则Eξ2≥(Eξ)2,当且仅当x1=x2=…=xk=Eξ时等式成立.证明Eξ2-(Eξ)2=∑k=n1x2k·Pk-(Eξ)2=∑k=n1(xk-Eξ)2·Pk≥0…  相似文献   

11.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

12.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

13.
最值问题是初中数学的一个重要内容,也是各种考试命题的一个热点。笔者根据自己的教学体会,将初中阶段所涉及的求函数最值问题的题目类型归纳如下。 一、求y=ax~2+bx+c(a≠0)型的最大(小) 值 当a>0时,y最小值=(4ac-b~2)/4a;当a<0时,y最大值=(4ac-b~2)/4a。 例1.求y=-2x+7的最大值. 解 ∵a<0,∴y最大值=(81)/8. 例2.求y=2x~2-3x+4的最小值. 解 ∵a<0,∴y最小值=(23)/8. 二、求隐二次函数的最大(小)值 已知y与x不成二次函数关系,但z与x成二次函数关系,可以先求z的最大(小)值,而后再求y的最大(小)值. 例3.求函数y=1/(2+(x-1)~2)的最大值.  相似文献   

14.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

15.
二次函数y =ax2 +bx +c(a≠ 0 )配方后可变为标准形式y =a(x + b2a) 2 + 4ac-b24a (a≠ 0 ) ,由此可以很快求出y的最值 ,初中数学中 ,有不少的最值问题 ,常常可以转化为二次函数来求解 ,下面通过几个例子来介绍几种求解方法。一、主元代入法例 1. 已知x、y、z均是实数 ,且满足x + 2y -z =6x -y + 2z =3求x2 +y2 +z2 的最小值。 (2 0 0 1年安庆市竞赛题 )解 :原方程组变为 :x + 2y =6 +zx -y =3- 2z,解得 x =4 -zy =z+ 1于是x2 +y2 +z2=(4-z) 2 + (z+ 1) 2 +z2=3z2 - 6z+ 17=3(z - 1) 2 + 14当z=1(此时x =3,y =2 )时 ,x2 +y2 +z2 取到最小值…  相似文献   

16.
巧妙利用方差公式求函数的最大值、最小值等,可以使一类函数求值的思路清晰,解法巧妙.由方差的定义:当已知随机变量ξ的分布列为P(ξ=xk)=p+k(k=1,2,…)时,则方差Dξ=Eξ2-(Eξ)2=(x1-Eξ)2p1+(x2-Eξ)2p+2+…+(xn-Eξ)2pn+…≥0,可得Eξ2≥(Eξ)2.当x1=x2=x3=…=xn=…=Eξ时,取得等号.  相似文献   

17.
问题若实数x,y,z满足x+y+z=12,x 2+y 2+z 2=54,试求xy的最大值和最小值.[JP3]解法1:由x 2+y 2=54-z 2,可设x=54-z 2 cosθ,y=54-z 2 sinθ.[JP]则x+y+z=12,即12-z=54-z 2(sinθ+cosθ)=108-2z 2 sin(θ+π4),从而|12-z|≤108-2z 2,解得z∈[2,6].所以xy=12[(x+y)2-(x 2+y 2)]=12[(12-z)2-(54-z 2)]=z 2-12z+45.由2≤z≤6,得9≤z 2-12z+45≤25,即xy的最大值为25,最小值为9.  相似文献   

18.
第一试一、选择题 (每小题 7分 ,共 4 2分 )1 .两位数x5与三位数 3yz之积等于 7850 ,则数字x、y、z分别为 (   ) .(A)x =2 ,y =1 ,z=2  (B)x =3 ,y =1 ,z=2(C)x =2 ,y =1 ,z=4  (D)x =4 ,y =1 ,z=22 .如果方程 (x -a) (x -b) =M的两根为α、β ,那么 ,方程 (x -α) (x - β) =-M的两根平方和为(   ) .(A)a2 +b       (B)a +b2(C)a2 +b +b2 (D)a2 +b2图 13 .如图 1 ,EF∥BC ,S  相似文献   

19.
彭光焰 《中学理科》2007,(12):10-12
恰当地应用好向量和导数,许多最值问题便迎刃而解,并且利用向量和导数来求最值,容易被学生接受.为了便于比较.一、用|a||b|≥a.b求最值例1已知x,y,z∈R ,且x y z=1,求x1 4y z9的最小值.解:令a=(1x,2y,3z),b=(x,y,z),则|a|2=1x 4y 9z,|b|2=1,(a.b)2=(1 2 3)2=36.由|a|2|b|2≥(a.b)2得,1x 4y 9z≥36,当且仅当1x=2y=3z时等号成立,即x=16,y=31,z=21.∴1x 4y 9z的最小值为36.例2已知ai,bi∈R ,且∑ni=1ai=∑ni=1bi=1,求a1a 12b1 a2a 22b2 … ana 2nbn的最小值.解析:令p=(a1a1 b1,aa2 2b2,…,anan bn,q=(a1 b1,a2 b2,…,an bn),则|p|2=a1a 21b1 a…  相似文献   

20.
一、要点分析1.随机变量若随机试验的结果可用一个变量表示,则这样的变量叫作随机变量,常用希腊字母ξ、η等表示.(1)随机变量的实质是随机试验结果的函数,它的自变量是随机试验的结果(是一个随机事件,不是量,更不是数);(2)随机变量的取值在试验前不可知,只有试验后才能知道;(3)随机变量的取值有时是人为规定的,如对于随机试验“掷一枚硬币”,我们用随机变量ξ=1表示随机事件“出现正面”,ξ=0表示“出现反面”.2.离散型随机变量的分布列离散型随机变量ξ可能取得值为x1x2x3…,而取xi(i=1、2…)的概率为Pi.下图表格叫ξ的概率分布列,简称分…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号